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Abstract

Through the use of a multiserver capability-based ar-
chitecture, the GNU Hurd has attempted to increase
security and flexibility relative to traditional Unix-like
operating systems. This shift away from a monolithic
design requires a reevaluation of conventional operat-
ing system praxis to determine its degree of continued
applicability. Resource scheduling appears particularly
defunct in this regard: to make smarter scheduling deci-
sions, monolithic systems cross component boundaries
to gain insight into application behavior. This introspec-
tion is incompatible with a multiserver architecture and
its elimination, as observed in Mach, the current micro-
kernel used by the GNU Hurd, results in noticeable per-
formance degradation. To this end, I propose that rather
than have the operating system provide virtualized re-
sources, i.e. schedule the contents of resources on be-
half of applications, it offer near raw access to the prin-
cipals which they must multiplex as required thereby
relieving e.g. the memory manager of paging decisions.
The resource managers must still partition the physi-
cal resources among the competing principals. For this,
I suggest a market based solution in which principals
have a periodically renewed credit allowance and lease
the required resources. This approach also suits adap-
tive and soft real-time applications.
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ity, Resource Management, Resource Allocation, Re-
source Scheduling, Imprecise Calculations, Market
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1 Introduction

The Hurd aims to provide a secure and flexible operat-
ing system foundation without losing the ability to sup-
port legacy applications[Bus94]. To achieve this, the
Hurd employs a capability based multiserver architec-
ture. Unlike a monolithic design, services traditionally
provided by the kernel such as file systems and proto-
col drivers are broken out of the nucleus and placed in
user-space servers to which clients issue remote pro-
cedure calls (RPCs). The messages carry capabilities
each of which conveys the authority to invoke a set of
methods on an object. On top of this framework, the
Hurd provides a tightly integrated POSIX personality
such that programs can transparently take advantage of
many Hurd features or do so with minimal modification.

This paradigm shift away from a monolithic design
requires reflection on the strategies conventionally em-
ployed in operating systems. In particular, resource
management in the form of resource accouting and re-
source scheduling.

In monolithic systems, processes either directly use
resources or ask the kernel for some services. In this
framework, resource accounting is relatively straight-
forward as applications either act on their own or the
kernel acts on its behalf. In a multiserver system, tasks
often interact: clients contact servers which perform op-
erations for them. From the kernel’s perspective and of-
ten the operating system personality’s, the servers are
untrusted and cannot be relied upon to correctly report
the amount of resources used by the client.

Monolithic kernels also take advantage of the cen-
tralized model to peer into various subsystems so as to
gain insight into how applications use resources thus
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allowing them to better predict processes’ requirements
and usage. Since resource use is divorced from resource
management, e.g. file systems are simply user processes
completely separate from the CPU, memory and I/O
schedulers, the kernel simply cannot access this type of
information.

As seen on GNU Mach, performance is extremely
poor and anecdotal evidence suggests that this is part
of the reason. Assuming good resource scheduling re-
quires application usage patterns, we need to reunite re-
source usage and resource scheduling. That is, we ei-
ther reintegrated components back into the kernel where
scheduling occurs or we move resource scheduling to
the tasks where the resources are actually used.

The approach that I propose in this paper is the latter:
the operating system provides near physical resources
to applications which must do any required virtualiza-
tion. Hence, we strip the illusion that each task has
its own virtual machine with infinite resources. This
has a double advantage: as applications are in the best
position to predict how they will use resources in the
future (e.g. with respect to page eviction), they are
now in a position to schedule them; and because ap-
plications know exactly how much of each sparse re-
source is available, they can better adapt. A similar ap-
proach has been successfully employed in V++[HC92],
Exokernel[EGK95] and Nemesis[Han99].

This does not completely free the resource managers
from having to schedule the resources they manage:
they must still distribute the resources among compet-
ing principals. To this end, I propose a market based
solution to resource allocation in which principals are
given periodic allowances with which they can reserve
resources. A market based solution is desirable as:
there is a huge volume of literature interested in mar-
ket dynamics, i.e. the field of economics; and moreover,
markets have the desirable property of solving sparse
resource allocation problems with little more informa-
tion than supply and demand[Cle96].

2 Mach’s Multiserver Framework

Operating systems often treat physical memory,
i.e. core, as a cache of backing store. Protocol drivers
translate parts of backing store to expose structured
data sources. A file system, for instance, exposes files
and may reside on one or more hard disks or be ac-
cessed over a network. Operating systems can use vir-
tual memory to provide a task with a consistent view

of a portion of backing store independent of whether it
is actually cached in core. To support this mode of op-
eration, the operating system provides a mechanism to
logically bind parts of virtual memory address spaces to
segments of backing store. On Unix-like operating sys-
tems, the kernel provides themmap system call. When
a client accesses a part of its virtual memory address
space which is bound to backing store but not in core,
the hardware suspends the thread and notifies the kernel
so that it can bring the data into core, install the map-
ping and resume the thread.

Which parts of backing store are in core at any time
are usually left to the discretion of the operating sys-
tem. Typically, backing store is only brought into core
once it has been referenced, i.e. not necessarily at bind
time. When the available physical memory is busy
caching other portions of backing store (that is to say,
there is memory pressure), the operating system must
choose memory to return to backing store, i.e. evict, so
as to make memory available. Operating systems often
employ a form of the least recently used (LRU) pol-
icy combined with some predictive algorithms. This is
done transparently to the user applications1: other than
the wall clock difference, they observe nothing.

The ability to provide integrated interpretations of
backing store affects flexibility. On monolithic oper-
ating systems this is often done by patching the kernel
either at compile time or at runtime through the loading
of modules. The problem with this approach is that the
code executes in a privileged domain and thus poses a
security risk: an error in the code can potentially cause
the whole system to crash; and malicious code can cre-
ate havoc. The number of interpreters actually loaded
on a secure system is thus relatively small and restricted
to those which the administrator trusts. Moreover, us-
ing the interpreters, e.g. mounting a file system, is of-
ten itself a privileged operation. An important part of
the multiserver approach is to provide a mechanism to
allow untrusted applications to service virtual memory
faults. Mach does this through its so-called external
memory management API.

Briefly, on Mach, tasks can create memory objects,
internally associate them with backing store and pro-
vide a capability to clients. Clients then map the mem-
ory objects into their address space using thevm map

1Privileged applications are often allowed to wire memory.
POSIX also provides themadvise function which permits applica-
tions to provide hints about backing store use to the operating system,
however, there is no requirement that the operating system consider
them.
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system call. When the client faults, Mach finds the
memory object backing the faulting address and queues
a page-in request on the memory object. When the
server dequeues the message, it fetches the data from
backing store and returns it to Mach which then installs
the mapping and resumes the faulting client[YTR+87].

This model, like the Unix model, provides applica-
tions the illusion of running alone on a machine with
infinite resources: all mappings seem to be in core;
they never have to yield the CPU; and performing I/O
is without effort. This model is useful when resources
are plentiful. As resources become scarce, they must
be scheduled. Monolithic systems violate component
boundaries to gain better insight into how resources are
used.

There are two deficiencies with this model: when
reading from or writing to backing store, servers allo-
cate resources including memory, CPU and I/O band-
width on behalf of their clients inhibiting resource ac-
counting; and Mach provides tasks no mechanism to
influence the page replacement policy.

2.1 Resource Accounting

That servers not part of the TCB must allocate resources
on behalf of their clients suggests that resource account-
ing is incomplete. If so, this is a serious design flaw:
systems which execute potentially malicious code must
have mechanisms in place to constrain allocation so as
to mitigate attempts at denial of service attacks.

The first problem is that Mach has no way to iden-
tify the actual resource principals: resource principals
often cross protection domains. The clearest example
is perhaps that a single user runs multiple processes:
the processes run at the user’s behest, thus all resources
they allocate are allocated on the user’s behalf and the
user should pay for them. The obvious solution of des-
ignating users as the resource principals is problem-
atic: users are a Hurd concept and completely foreign to
Mach. Using the protection domain to enforce user re-
source limits is also suboptimal as then each task must
be limited to the total of the real principal’s resources
divided by the maximum number of tasks the principal
may create. This approach results in resource under-
utilization.

The problem is a bit subtler than suggested above:
when a task issues an RPC it can be considered to run
in the context of the server. By way of analogy, the
server is a virtual machine and the RPC interface its set
of instructions which authorized clients can issue. This

is a variation of the confused deputy problem[Har88]:
the server uses its own authority to allocate resources
which it does not directly manage (i.e. unlike the file
system to which it mediates access) for clients.

If servers are to allocate resources on clients’ be-
halves, for instance, when a client reads from a file,
the server must traverse the meta-data and read the data
from backing store into memory, the server allocates
memory, CPU time and I/O bandwidth, then a mech-
anism needs to be provided to charge the principal.
Within this model, resource containers[BDM99] appear
a tenable solution2. There also remains the the compli-
cation that within the Mach framework, clients do not
knowingly trigger faults and thus cannot pass the re-
quired resources at that time. Instead, they must pass
the resources at map time or a facility must be intro-
duced to allow a client to add resources to a container.

2.2 Resource Scheduling

Resource scheduling, with the notable exception of hard
real time systems to which the Hurd does not aspire, is
primarily a question of performance. Of course, a sys-
tem where it takes so long to perform an operation that
the result is no longer useful once it has been obtained
does not help either even if it is the most secure or cor-
rect system. The performance of the Hurd running on
GNU Mach is, however, problematic. Currently, appli-
cations executing on the Hurd run approximately an or-
der of magnitude slower than on a modern GNU/Linux
distribution.

Attributing this solely to the page eviction scheme
is unfair: there are a number of engineering problems
with Mach. First, the last real work on GNU Mach was
done in 1994 while it was still being maintained by the
University of Utah. GNU Mach is at best optimized for
machines with tens of megabytes of ram and processors
running at approximately 100 MHz. Moreover, many
of the algorithms don’t scale well, in particular the use
of a single handed clock to approximate LRU. There
are also some areas where GNU Mach was never com-
pleted. In the page out path, for instance, GNU Mach
sends a single page to a server at a time even if it could
bundle several together.

More difficult to solve are design problems: mono-
lithic systems are able to see that a user is, for instance,

2There are a number of trust issues here. Applying game theory,
we can adopt that in the first instance we are willing to trust a server
with small amounts of resources until it proves itself untrustworthy at
which point we no longer make use of its services.
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reading a file. Mach only sees raw I/O or, at best, ac-
cess of a memory object. The Linux memory manager
makes up-calls to the various components to shrink their
caches when memory becomes sparse. It also detects
access like streaming I/O which require knowledge of
the file system[vR02]. Because these components ex-
ists in separate servers in a multiserver system, Mach is
unable to do this.

This problem has been considered by [MA90, LCC].
Both propose solutions where the server backing a
memory object may optionally provide a paging pol-
icy. This offers a potential performance improvement.
More important, however, is providing this mechanism
to applications who are actually using the memory.

3 Self-Managed Tasks

Under Mach’s extensibility framework, because tasks
are not aware of page faults, they cannot directly request
the data and thus pay for it on their own account. A bet-
ter interface would have faults forwarded to tasks where
they can then determine what memory to evict if re-
quired and acquire the necessary resources to bring the
data into core. This requires changing the way in which
memory is bound to the virtual memory address space:
it must now be the responsibility of the tasks to manage
this translation. Microkernels also make bad resource
scheduling decisions because they do not know what
applications are doing: they do not have the insight that
their monolithic counterparts have. L4 provides better
primitives for this mode of operation[Gro04].

Having tasks manage their own resources is not
a new idea: V++[HC92], Exokernel[EGK95] and
Nemesis[Han99] all shift the burden from the nucleus
to the operating system personality or processes.

Denning argues that we cannot trust application input
with respect to resource scheduling because resources
are multiplexed on their behalf [Den68]. Applications
are not, however, giving advice: they are, in the first
instance, managing their own resources.

Programs which are explicitly programmed to take
advantage of these mechanisms will perform best. It
is not always desirable or feasible to change programs
at the source level. In this case, a library can be used
to mediate the resource scheduling. The default li-
brary can provide an approximation of LRU for mem-
ory scheduling and highest priority first round robin
scheduling. Because it is linked directly to the appli-
cations, it can intercept various standard library calls

such asmalloc, mmap andmadvise. For applications
willing to make simple modification, hooks can be pro-
vided, for instance, to drain memory caches. Finally,
the behavior of the library can be influence by environ-
ment variables which can be set either by the applica-
tion distributor, e.g. Debian, or the user.

There are several classes of applications which, if
they could manage their own resource scheduling,
would perform far better: database systems, scientific
applications, garbage collectors and multimedia appli-
cations. Also, soft real-time applications can scale bet-
ter knowing the resources available to them rather than
trying to guess.

Applications and servers often cache results. In the
simple case where the data is unmodified, it can be
dropped and reread from backing store later. Slightly
more complicated is the case where the data is the re-
sult of a render or other calculation. For instance, a
document viewer may keep rendered pages in memory;
and a file system may cache thed entry structures. As
long as there is sufficient memory, this is not a problem.
When there is memory pressure, in both of these cases,
it could be less expensive to simply drop the data and
recreate it later, if required, then to consume I/O band-
width sending the data to swap. This type of decision
can only be made by the applications themselves.

The reason that monolithic kernels cross component
boundaries is to gain insight into how applications will
use a resource. Of course, they still only have limited
knowledge as they can only detect known access pat-
terns. The entity with the best knowledge of how an
application will use a resource is, of course, the ap-
plication itself. It may not have complete knowledge
of its exact access patterns and resource requirements,
however, Stonebraker notes that, for instance, INGRES
generally knows at the beginning of its examination of a
block which block it will access next, however, because
it is not necessarily the one next in the file, the operating
system will have no way to have known[Sto81]. Stone-
braker calls for an interface to inject application specific
knowledge into the resource scheduler so that database
managers no longer have to implement their own vir-
tual memory system. Other classes of applications can
profit as well: scientific applications can often break
calculations down fitting them to the amount of memory
available[CE97], garbage collectors often do not follow
the LRU acceess pattern [HFB04] and multimedia ap-
plictions, for instance, can decrease quality thereby re-
ducing the number of dropped frames [SM98, DG01].
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4 Resource Distribution

If tasks manage their own resources, this raises a new
problem: physical resources need to be divided between
the competing principals. One approach is to use a mar-
ket.

This technique has already been explored by
V++[HC92]. One policy that it chose was to separate
resources. It is our intention to unify the resources un-
der a single currency as it has been observed that re-
sources can often be traded one for the other. For in-
stance, when bandwidth is plentiful, it doesn’t make
sense to compress data. As bandwidth contention in-
creases, if CPU is available, compression can be used
to send more data per unit time. The incentive is that
the principal will perform better: is pays less overall
for the same service hence it is in its own benefit to be
adaptive[Wel96].

We don’t want to use a protection domain as the re-
source principal[BDM99]. Although this is sometimes
the case, a process such as a web server might manage
a number of network connections and thus need to allo-
cate resources among them. This is difficult particularly
when it comes to resources allocated indirectly, for in-
stance, network bandwidth. Alternatively, and which
is particularly true in a multiserver operating system, a
single task can span several protection domains: a file
server may allocate memory on behalf of a client. The
client should be changed for the memory.

Denning states that memory management and CPU
scheduling are tightly coupled: to make progress, a pro-
cess needs its working set in memory; having mem-
ory alone is insufficient as the purpose of obtaining the
memory was to continue execution[Den68].

Resources can often be traded one for another.
Stratford suggests that a carefully chosen video for-
mat would allow an application to adapt either to
disc bandwidth, CPU and memory when decoding
the video[SM98]. Domjan uses the example that ap-
plications can either render or transcode depending
on the availability of resources and can do so fairly
quickly[DG01].

To support these modes of operation, principals will
be given a periodic allowance proportionate to their
static priority in the system. It is important that they
are not able to accumulate wealth. This provides an
incentive to applications to make the best of the avail-
able resources and avoids priority inversion. The latter
problem arises when a low priority principal waits to
accumulate sufficient wealth such that is able to acquire

most of the resources of the system thereby resulting
in a denial of service attack. This is often the case in
multiuser systems where many users log in occasion-
ally. To prevent this, credits which are not used decay.
Thus minimal savings are possible. This also has the
desirable property that when principals starts they have
a slight, brief inflated priority and thus able to bootstrap
relatively quickly. Many programs use a bit of resources
when starting or when responding to user input and then
spend the rest of their time idle.

We design the market such that resources are dis-
tributed fairly based on externally assigned priorities
(based, for example, on how much a customer has paid
or the class of tasks being performed). As is often the
case in real markets, agents’ demand vary based on ex-
ternal conditions. To maximize resource utilization, the
market should distribute the available resources among
the active agents based on their relative priorities. How-
ever, long term resource commitments must cost more
as at any time agents become active and the system must
dynamically adjust. A data backup program, for in-
stance, may be given a small allowance. While the sys-
tem is under pressure, it may only be able to acquire a
few kilobytes per second of bandwidth. However, when
the system goes idle, it should be able to utilize all of
the available bandwidth.

A second important criteria is that hording wealth
must not be possible. A low priority agent may re-
main idle while high priority agents run continuously.
A malicious agent could wait until there is significant
demand and then strain the economy by purchasing a
significant amount of resources thereby denying a high
priority agent its due and resulting in a denial of ser-
vice. By penalizing agents for not spending their al-
lowance, the market need only consider the wealth of
active agents when determining price. As agents be-
come active, the system can gracefully adapt: when
there is significant resource pressure, there are many
competing agents and a single agent cannot signifi-
cantly change the overall wealth; when there is no re-
source pressure, it doesn’t matter.

Reservation vectors contain a series of possible al-
location schemes with relative utilities. The sched-
uler will grant the reservation with the highest utility
which the principal can afford. Reservations include a
mandatory part which the principal requires and zero
or more optional parts each of which would increase
service[HFL96].

Since multiple tasks can use the same principle
identifier to make reservations, we need to provide a
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medium to determine what utility to grant.

5 Conclusion

Simply importing resource scheduling strategies from
monolithic systems into multiserver systems has been
shown to not work. The major problem in this case is
that monolithic kernels can use component introspec-
tion. Rather than attempt to introduce mechanisms to
make this available to the microkernel, I have suggested
that processes schedule their own resources. This is de-
sirable as the processes themselves know best which re-
sources they need when and can thus better schedule
and adapt than any external entity.

With multiple entities competing for the available
sprarse resources, the operating system must still pro-
vide a distribution mechanism. To this, I have proposed
a market based approach. The reason that we have the
applications themselves manage their resources is be-
cause Mach did not have enough information to man-
age them intelligently. In the proposed approach, the
operating system has even less knowledge. Markets re-
quire very little information to work well. In our case,
they know the relative priorities of the principals as well
as the supply and demand. Moreover, there is a large
body of literature which covers how markets distribute
resources fairly. There has been some attempt at apply-
ing these in the domain of computer science, however,
other than the work on V++, I am not aware of much
work done at the operating system level.

To date, I have, minus the frame reclamation code,
nearly completed an initial implementation of the phys-
ical memory manager. The server proper consists of
approximately 5000 lines of heavily comment C code.
Most of the complexity is in dealing with super pages.
In particular, deallocating a part of a shared super page
greatly complicates reference counting. A simple vir-
tual memory management library is also present but
does not yet do any paging. Currently, I am working
on the I/O interfaces and an initial file system. When
that code is completely, we should have a sufficient
framework that I can fully invest myself in implement-
ing and analyzing the resource scheduling mechanisms
and policies outlined in this paper.
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