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Abstract

The GNU Hurd’s design was motivated by a desire to
rectify a number of observed shortcomings in Unix.
Foremost among these is that many policies that limit
users exist simply as remnants of the design of the sys-
tem’s mechanisms and their implementation. To increase
extensibility and integration, the Hurd adopts an object-
based architecture and defines interfaces, which, in par-
ticular those for the composition of and access to name
spaces, are virtualizable.

This paper is first a presentation of the Hurd’s design
goals and a characterization of its architecture primarily
as it represents a departure from Unix’s. We then critique
the architecture and assess it in terms of the user envi-
ronment of today focusing on security. Then follows an
evaluation of Mach, the microkernel on which the Hurd
is built, emphasizing the design constraints which Mach
imposes as well as a number of deficiencies its design
presents for multi-server like systems. Finally, we reflect
on the properties such a system appears to require.

1 Introduction
The goal of the GNU project is to create an operating
system consisting entirely of free software. By the end
of the 1980s, the most important missing component was
the kernel. As Unix systems were the primary operating
system used by both GNU software users and developers
and as the components written to that date were designed
for such systems, a high degree of API compatibility was
deemed necessary. With the hope of speeding develop-
ment, the decision was made to base the system on a free
version of the Mach kernel from CMU. The designers
decided to exploit the microkernel foundation to build a
more integrated and extensible system, improving its us-
ability.

In [5], Bushnell outlines the Hurd’s architecture and
states that its goals, in addition to legacy compatibility,
are to permit:

• Efficient sharing of scarce resources

• Greater extensibility and integration

• Mutually suspicious collaboration

• Sharing without prior arrangement

The intent was to improve the usability of the sys-
tem through the creation of a well integrated, component
based system in which system services can be easily re-
placed and extended at a fine granularity yet which is
sufficiently compatible with existing APIs to run most
important software packages with little modification, in
particular, those from the GNU project. These concerns
motivated a multi-server structured system with a dis-
tributed, user extensible, naming framework.

2 The GNU Hurd’s Architecture
The Hurd is a set of objects. An object is similar to
a closure: it implements an interface and consists of a
program and state. These objects extend the objects ex-
posed by the underlying microkernel, Mach [39], to in-
clude standard system functionality and to dictate system
policy. System services are made available exclusively
through objects.

Hurd objects are realized in user-space processes.
Such processes are referred to as servers. To improve
fault isolation and reduce that on which a program de-
pends for its correct operation, its reliance set, [23, Ch.
5], a server implements a minimal number of related ob-
jects. Typically, a server decomposes some larger object.
A file system server, for instance, exposes a part of back-
ing store as a hierarchy of files and directories. This is in
contrast to a monolithic system where many components
execute in the kernel’s protection domain and component
boundaries are only a formality.

Objects are referenced by capabilities [8]. Capabili-
ties both designate an object and authorize access to it.
Mach provides protected capabilities: unforgeable, task
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local, opaque references held in a capability slot in a pro-
cess’s address space. They can only be communicated
using the message passing facility.

A capability does not directly reference an object. On
Mach, it references a kernel message queue, a port. A
client holds a capability that permits queuing of mes-
sages, a send right, and a server, a capability that permits
dequeuing of messages, a receive right. A server inter-
nally associates the kernel object with the user object.

A process may sense and manipulate an object only
by invoking a capability which references it. Invoking a
capability causes a message to be made available to the
process implementing the referenced object. The mes-
sage may carry data and capabilities determined by the
invoker. When the invoker wants a reply, it includes a
reply capability, a send-once right to a kernel message
queue to which it has a receive right. It then waits for a
message. This is the remote procedure call (RPC) pat-
tern.

Because using object, whether it is implemented by
Mach or by a user-space process, is only possible using
the message passing interface, any process may transpar-
ently implement, proxy or extend an object insofar as it
can interpose itself between the object and the user. This
is a basic requirement for virtualization [28] and refer-
ence monitors [1].

2.1 System Structure

The Hurd is defined by approximately a dozen canon-
ical interfaces. The fs interface is used in the exami-
nation and manipulation of directory and file meta-data.
This includes traversing object relationships using sym-
bolic names. The io interface is used to read from data
sources and to write to data sinks. File handle objects
usually implement both of these interfaces. The fsys
interface is used for whole file system related operations,
e.g., those set on Unix using the -o option to mount,
as well as to obtain an unauthenticated file handle to the
root of the file system.

Additional interfaces include the auth interface for
managing identities and for the support of identity based
access control (IBAC), the password interface for ob-
taining identity objects against passwords, the exec
interface for help in instantiating programs and the
process interface for process management including
process identifiers (PIDs), session and process group
management and non-preemptive signal delivery.

A Hurd system consists of at least the Mach ker-
nel, an auth server, a proc server, an exec server,
a password server and a file system server. These
servers provide a similar level of abstraction as the sys-
tem call interface of a traditional monolithic kernel.

The C library directly interacts with these servers in
its implementation of POSIX and other higher level in-

terfaces. Most programs use these interfaces exclusively.
The implementation also contains hooks and extensions
for more convenient use of some Hurd-specific features.

A number of utility programs extend the traditional
collection of Unix utilities giving the user direct access
to Hurd functionality. The most important of these is the
settrans program for starting new servers and linking
them to a name space.

2.2 Naming and Name Spaces

Although capabilities allow processes to reference ob-
jects, a convention is required to permit users to des-
ignate the objects on which a program should operate.
The Hurd’s solution appears similar to Unix’s virtual file
system (VFS), however, differentiates itself in that its
realization is distributed, not centralized. In particular,
any process, without special privilege, can implement the
conventions of the Hurd’s VFS and create and publish a
commonly understood naming hierarchy.

In this framework, object relations are named symbol-
ically. The traversal of object relationships, name resolu-
tion, is realized using the dir_lookup interface. There
is no implicit root: resolution is always done relative to
an explicitly referenced object. Applications, however,
resolve most names either relative to the capability stored
in its root directory capability slot or relative to the capa-
bility stored in its current working directory slot, which
are normally filled by the parent process with a copy of
its own respective references at process creation.

Often, the dir_lookupmethod does not actually re-
turn a capability referencing the resolved object: it cre-
ates a new object, a handle, which references some ses-
sion state and the resolved object. These sessions are
used primarily to fulfill some POSIX requirement. A file
handle, for instance, includes a cursor, which records the
session’s current position in the file.

2.2.1 Extending a Name Space

When Alice wishes to access files on an FTP server from
her Unix workstation, she likely uses an FTP program to
copy the relevant files locally. Later, after having made
some modifications, she again runs the FTP program to
copy the modifications back to the server.

These steps are necessary as the programs Alice uses
to manipulate the data cannot manipulate the objects on
the FTP server: neither do the programs understand the
object naming and access conventions of the FTP server
nor is Alice able to instantiate her own file system that
can make the objects available using the API they under-
stand. In the latter case, the problem is that this typically
requires uploading code to the kernel or using a fragile
kernel service (e.g., a file system driver, most implemen-
tations of which assume correct input).

To work around this, the GNOME and KDE projects
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Figure 1: The settrans program.

have built their own VFS implementations which are user
extensible but only accessible using different calling con-
ventions. As such, applications which do not use this API
appear less integrated. The Linux kernel developers have
acknowledged this problem and have recently extended
their kernel to support unprivileged, user-space file sys-
tems.

On the Hurd, Alice could have used the ftpfs program
to make the objects on the FTP server available in a por-
tion of the VFS she controls. Alice does not require any
special privilege to do this: ftpfs is a normal program
which implements a protocol; she just requires the ap-
propriate access to the node to which she wants to attach
it. Such programs are referred to as translators, as they
translate between a pair of naming and access conven-
tions.

Hurd translators are linked to other translators by in-
serting a capability referencing the fsys object of the
translator at the desired mount point. This is usually done
using the settrans program and is conceptually sim-
ilar to mounting a file system on Unix. In the scenario
presented above, Alice could have run a command simi-
lar to the following:

$ settrans -a ~/mnt /hurd/ftpfs \
username:password@site.org/~

settrans starts an instance of the ftpfs program and
attaches it to the node ~/mnt. The remaining arguments
are passed to the translator which may freely interpret
them, in this case, a URL.

The settrans program works by first obtaining a
handle to the mount point. It then instantiates the pro-
gram and, before setting it running, creates a port and

inserts a send right to it in the process’s bootstrap ca-
pability slot (Figure 1(a)). When the translator starts, it
invokes the fsys_startup method on the bootstrap
capability passing a capability referencing its fsys ob-
ject as an argument. (This object is required by the
parent translator in its dir_lookup implementation
to redirect a caller to the translator.) settrans then
invokes file_set_translator on the capability
naming the mount point handle, passing the root capa-
bility as an argument (Figure 1(b)). The parent transla-
tor returns an unauthenticated handle to the mount point
which settrans, in turn, forwards to the new transla-
tor (Figure 1(c)).

2.2.2 Name Resolution

A translator may use its fsys object simply as a ren-
dezvous point. The auth and password servers do
this: neither exposes objects in a way appropriate for a
directory structure. Most servers, however, have a hi-
erarchy of objects which they make accessible via the
standard interfaces.

Object relationships are named symbolically and tra-
versed using the dir_lookup method. The dir_-
lookup method accepts a path, a series of path com-
ponents, symbolic names, separated by one or more /
characters, and resolves the first path component. If the
resolved object is also implemented by the server and
path components remain, the server, without returning to
the caller, may repeat the process using the resolved ob-
ject as the new starting point and the remainder of the
path. This is an optimization to reduce the number of
RPCs when resolving paths with multiple components
naming objects implemented by the same server.

This process continues until either an error occurs, the
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path is completely resolved or a named object is imple-
mented by another server. These three scenarios corre-
spond to the three types of replies: if an error occurs
resolving a path component, e.g., a component does not
name an object or an access error occurs, the server re-
turns an error to the caller; if the path resolves to an
object which the server implements, a capability which
names a new handle to the resolved object authenticated
using the invoked handle’s identity is returned; and if,
in resolving the supplied path, an object is encountered
which names an object on another server, the server ob-
tains a capability to a new unauthenticated root object
handle on the server and returns this as well as the path
which remains to be resolved to the client in the form
of a so-called retry message. In the last case, after
the client identifies itself to the new server, it invokes
dir_lookup on authenticated handle and passes the
rewritten path.

Some servers also directly support symbolic links (al-
though, they can also be realized as normal translators).
This does not require any special handling beyond rec-
ognizing them and rewriting the path appropriately. Res-
olution continues as normal.

To remain compatible with POSIX, a dir_lookup
implementation is required to resolve the dot-dot direc-
tory entry, i.e., the directory entry which names the di-
rectory which contains the directory. (As a special case,
POSIX indicates that dot-dot resolves to itself at the
root.) If a process calls dir_lookup on a capability
naming /home/alice/mnt, as in Figure 1, passing
dot-dot as the path to resolve, the ftpfs instance would re-
turn a retry message which included a capability naming
the object /home/alice/mnt on the parent translator
and have rewritten the path to dot-dot.

The Unix chroot mechanism requires that a direc-
tory appear to a group of processes as a root. That is,
the meaning of dot-dot must be overridden. The Hurd’s
mechanism, file_reparent, is slightly more general
and requires less privileged. file_reparent creates
a new handle for which dot-dot resolves to a provided ca-
pability. Handles derived from this one naming the same
node preserve this property. (A void capability indicates
that the directory should appear as a root.)
file_reparent also allows the realization of firm

links, links which bind a portion of the VFS to another
location, a sort of cross file system hard link. Linux has
a similar mechanism, bind mounts.

2.2.3 Persistent Translators

On the Hurd, neither processes nor capabilities are per-
sistent: files are the only persistent resource. To restore
the operating environment, sufficiently privileged pro-
grams, usually at installation time, register a command
to be run at system restart. When the system is shut-

down, processes are informed of their imminent termi-
nation and given the opportunity to save any state. Then,
on system restart, this is used to restore the system to the
approximate state it was in when it was last shutdown.

This approach was inherited from Unix and, for a rela-
tively static, centrally controlled system, is sufficient for
configuration recovery. On the Hurd, users have much
more control over their computing environment through
the use of translators. To allow translators to be restarted
transparently and consistent with the distributed archi-
tecture, a passive translator setting can be saved in the
node on which the translator is set and, if no translator
is running when the node is accessed, the translator will
run the program specified in the passive translator set-
ting. The program is started with the UID and GID of the
node, which is often possible as it is normally the case
that the parent either has the same identity as the transla-
tor or an identity which dominates that of the translator
(e.g., root). When this is not the case, the translator is
safely started without an identity.

The passive translator setting is saved using the
file_set_translator method. Since the transla-
tor is started with the UID and GID of the node, it can
typically only be set by the owner of the node. How and
if the passive translator setting is saved is implementa-
tion defined. The ext2 file system implementation, for in-
stance, allocates a file system block for the passive trans-
lator setting and saves the block address in the relevant
inode.

2.3 Protection and Security

Hurd servers control access to objects based on the iden-
tity of the subject. The policy is similar to Unix but
the mechanism is quit different. On the Hurd, identi-
ties are first class objects (meaning that a single process
may have more than one or none at all) and are man-
aged by the auth server. The auth server also supports
programs in the realization of IBAC by providing an au-
thentication mechanism which allow programs to safely
expose identities to others in a verifiable manner.

2.3.1 Identity Management

As identities are first class objects, a process may have
access to any number of UIDs and GIDs or none at all.
Moreover, because they are simply objects named by ca-
pabilities, a process is able, without any special privilege,
to remove an identity by destroying it, so-called discre-
tionary authority reduction. This technique allows appli-
cations to run with less excess authority thereby reducing
the amount of damage a bug or an attacker can cause.

Applications which require access to a fixed number of
resources known at start up and after which do not further
require the authority an identity grants, can take advan-
tage of this technique. For example, a network server
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Figure 2: The authentication mechanism.

which needs to bind to a TCP port below 1024, an oper-
ation normally reserved to the superuser, but which does
not otherwise require the authority the superuser iden-
tity conveys, can run with no UIDs or GIDs after binding
to the port. This pattern is not limited to those applica-
tions which require access to a resource to which only
the superuser ID grants access: a document viewer, after
opening a user specified file, could destroy the identity
object to diminish the affects of a malicious macro.

It is possible to implement a similar scheme on Unix
with the help of a UID and GID dedicated to the pro-
gram instance. This solution has the disadvantage that
it requires help from the system administrator who must
reserve a UID and GID for each program instance that
wants to use this technique. This is further complicated
as only a process running as root is normally permitted
to change its UID and GID. These factors taken together
limit the use of this technique to critical system services.
It is worth noting that recent work by Seaborn on Plash, a
series of tools for practical least privilege for GNU/Linux
packages this functionality [32]. Plash automatically al-
locates UIDs and GIDs, creates chroots and facilitates
selected access delegation. This permits many programs
to be run unmodified and without cumbersome configu-
ration. Yet, to do this, Plash must provide safer imple-
mentations of dangerous functionality.

Servers which authenticate users such as FTP or ssh
servers can also take advantage of this additional func-
tionality: unlike the previous class of applications, these
programs require the ability to change UIDs during the
lifetime of the program. Because they interact with unau-
thenticated users while holding large amounts of author-
ity, they are highly targeted. In particular, such programs
are susceptible to buffer overflows and input validation

errors during the login phase. On the Hurd, such a pro-
gram instance can run with no identities. Then, after a
user has provided a user name and password, it presents
them to the password server in exchange for an identity
object thereby increasing its authority. The Hurd’s login
program does this. Because the amount of havoc an at-
tacker can wreck is proportional to the accessible author-
ity, the effects of a breech are diminished proportionally.

On Unix, privilege separation [29] is used to isolate
the parts of a program requiring root authority. This tech-
nique uses multiple processes which collaborate. One
process implements the typically small number of re-
quired privileged operations exposing them via a sim-
ple interface and the other, the balance of the functional-
ity. This eases verification of the privileged program and
makes exploitation of bugs more difficult. This pattern
also requires help from the system administrator for the
allocation of an unused UID and GID for each program
instance which uses this technique.

2.3.2 Authorization

IBAC is based on knowing the identity of the user. Thus,
when a subject authenticates access to an object which
is controlled by such a regime, it needs to disclose its
identity to the object. On Unix, the identity manager
and most servers are in the same trust domain. On the
Hurd, this is not the case. This exposes a tension: the
object must be confident of the authenticity of the pre-
sented identities but, because the client may not trust the
server with its identity, the object should only be able to
examine the identities, not be able to use them. Hohmuth
et al. list a number of useful scenarios for the latter case
[18]. The Hurd’s auth provides a three-way handshake
to support such mutually suspicious collaboration and
sharing without prior arrangement.
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When a client wishes to authenticate access to an
object, such as when it crosses a translator bound-
ary and only has an unauthenticated root handle, it
uses io_reauthenticate. The client includes a
so-called rendezvous capability referencing a new ker-
nel message queue (Figure 2(a)). In response to
this request, the server invokes the auth_server_-
authenticate method on a capability which refer-
ences an identity object on a trusted auth server. It in-
cludes the rendezvous capability as well as a second ca-
pability which names an as of yet unauthenticated han-
dle to the object. Without waiting for a reply, the client
invokes the auth_user_authenticate method on
a capability naming the identity object whose contents
it wishes to disclose to the server. It also includes the
rendezvous capability as an argument (Figure 2(b)). The
auth server then pairs the rendezvous capabilities and
completes the handshake by returning the identifiers in
the identity object to the server and the capability nam-
ing the new object to the client (Figure 2(c)). The server
then stores the identifiers in the object.

The capability to the new object is returned via the au-
thentication server to avoid giving access to the authenti-
cated object to an unprivileged third party. This prevents
man in the middle attacks: if Bob has a connection to
Alice via Mallet, i.e., Mallet is forwarding messages be-
tween the two, Alice and Bob can be sure that the estab-
lished channel only traverses the union of their reliance
sets. Otherwise, when Alice replies to Bob with the ca-
pability, Mallet could proxy the capability and observe
all communication.

The authentication interface and protocol are designed
such that it is possible to transparently interpose proxy
auth servers between both the client and the common
auth server as well as the server and the common auth
server. This makes the implementation of, e.g., Debian’s
fakeauth relatively straightforward.

2.4 Abstractions

Although the Hurd provides a rich set of abstractions,
many are easily circumvented for either flexibility or ef-
ficiency reasons. The store abstraction provides an ex-
ample of the latter: a store abstracts seekable data stores
such as files and block devices as well as combined stores
such as those in a RAID configuration.

As there is a cost involved in providing this level of
indirection, sufficiently privileged programs (i.e., pro-
grams which would be able to access the underly-
ing store in its entirety in the case of a partitioned
store) are able to bypass the store translator using the
file_get_storage_info method. In the sim-
plest case, the returned information can be passed
to libstore thereby avoiding the additional context
switches. This strategy has similarities to the Exokernel

approach to abstraction elimination: remove mandatory
abstractions and instead implement abstractions in user
libraries [19].

2.5 Legacy Support

As it was expected that the bulk of applications would
use the POSIX interface, it was important they not be
treated as second-class citizens, e.g., via support through
a poorly integrated subsystem. To this end, compatibility
was realized through the use of a so-called fat C library
where much of the POSIX API is implemented in terms
of Hurd and Mach mechanisms.

This strategy provides several advantages: many
legacy applications can be used with minimal modifi-
cation; applications are rarely disadvantaged for having
used the POSIX API; and few modifications are required
to take advantage of Hurd features. For example, an
FTP server on Unix normally requires the authority of
the root user. This program can be modified using two
isolated changes to take advantage of the Hurd’s pro-
tection mechanisms. As described in Section 2.3.1, an
FTP server needs to bind to a privileged TCP port and
be able to change users. Instead, the server can drop its
root identity after binding to the TCP port and use the
password server to authenticate the user and obtain the
respective identity object. Our experience suggests that
such isolated changes are much more readily integrated
by upstream authors.

3 A Critique
The design presented above has a number of shortcom-
ings in reaching its own stated goals as well as the de-
mands of a modern computing environment.

3.1 Security and Protection

Computers are used to store and process data. This data
has value and, as such, should have appropriate mech-
anisms in place according to its owner’s security pol-
icy to protect it from unauthorized access and disclosure
and to ensure its availability. Although the Hurd pro-
vides some mechanisms for protecting data from other
users, the Hurd does not provide mechanisms for the en-
forcement of a security policy for particular program in-
stances: programs are assumed to represent the interests
of the user and, as such, are run with the user’s authority.

Although the US military was acutely aware of such
threats over three decades ago [1], in the early 1990s
when the Hurd was designed, the average computer user
did not consider them important: malware was mostly
non-existent. This sentiment is echoed by Bushnell at
the end of his architectural overview of the Hurd: “[y]ou
can’t harm a process by giving it extra permission” [5].
Yet as programs are buggy [25, 26], sometimes malicious
and often exploited [36], not providing some mechanism
today is a serious shortcoming.
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To mitigate these problems, users need to be able to
provide a program instance access to only the objects it
needs to realize the user’s intent. That is, it should be
possible to run programs consistent with the principle of
least privilege (POLP) [31].

The discretionary authority reduction pattern de-
scribed in Section 2.3.1 does not address this problem:
although it useful in mitigating the effects of bugs and
their exploitation, the use of this pattern is at the discre-
tion of the program—not the user. As such, although
it represents good programming practice, users have not
gained any control: they still rely on the goodwill of pro-
grammers.

Capability practitioners contend that a well struc-
tured capability system can run programs under a POLP
regime without modification and without being invasive
to users. Polaris [34] and Plash [32] are two such systems
built on top of Windows XP and GNU/Linux respectively
which illustrate that this is possible. Their frameworks
are based on three observations. First, most programs re-
quire access to a limited number of objects which can be
statically enumerated. Second, authorization can often
be inferred, e.g., when the user double clicks on a re-
source to launch the associated application [38]. Finally,
additional access at run-time is only required by interac-
tive programs and most often after a user interaction via
an open or save dialog box. These can be replaced with
a call to a trusted program, the powerbox, with access to
all of the users resources which interfaces with the user
on the programs behalf and delegates access to those ob-
jects the user authorizes. This can be done transparently
by replacing the appropriate library routines.

If the Hurd were to abandon IBAC and implement
such a framework, the structure of most Hurd objects
would nevertheless remain problematic: most Hurd ob-
jects convey large amounts of authority which is not eas-
ily decomposed. This is often motivated by concern for
POSIX compatibility. A directory, for instance, provides
access not only to the sub-tree it dominates but to the
entire name space due to dot-dot naming the physical
parent. The behavior of dot-dot can be overridden us-
ing file_reparent, however, this requires explicit
action violating the principle of safe by default [31].

3.2 Malicious File Systems

Most legacy applications assume that file systems are not
malicious. This assumption is reasonable on a system
where all file systems are part of a process’s reliance set,
as is the case on Unix. On the Hurd, where arbitrary
programs are able to attach to and extend the virtual file
system, this assumption leads to a security vulnerability.
An ignorant backup program, for instance, may walk the
VFS copying the objects it finds. A malicious file sys-
tem can mount a denial of service attack by generating

an infinitely deep directory structure populated with ar-
bitrary amounts of pseudo-random data, using, relative
to the backup program, little resource.

It can be argued that there are always scenarios requir-
ing defensive programming and that this is simply one of
which Hurd programs need to be aware. This would be
correct but avoids the question of legacy support.

Our observation is that compatibility is not only re-
specting the interfaces but also the deep assumptions that
programs have regarding the API. Thus, it is the respon-
sibility of the compatibility layer to recognize these as-
sumptions and to meet them.

3.3 A File or a Directory?

On Unix, a VFS node is strongly typed: it is either a file,
a directory or some other well defined object. Yet, as the
directory and file interfaces are mostly distinguishable, it
is possible for an object to implement both. This appears
useful as data can sometimes be seen as either a single
file or a structured hierarchy of objects. It is convenient,
for instance, to copy a backup archive by copying a sin-
gle file, however, when searching for a file in the same
backup archive, it is more convenient to view the data
backup as a directory hierarchy and have the ability to
search it using normal tools such as find and grep.

In this example, the view is selected by the use of dis-
junct sets of interfaces. Some programs, like grep -r,
support multiple object types and rely on advice from
the object in the form of the file type information for dis-
ambiguation. In this case, which view should be pre-
sented depends on the intent of the user. This motivates
a mechanism by which a user or an agent acting on his
behalf can acquire separate names for separate views on
the same underlying object. Requiring explicit naming
of views reduces ambiguity thereby simplifying code, re-
moves a security risk and provides the user with greater
expressiveness through the uniform interface. Adding a
new naming mechanism would require that all programs
be taught how to use it. Instead, the existing naming
framework should be reused with the same effects and
objects should implement a single type.

3.4 The Dot-Dot Directory Entry

The resolution of dot-dot to the physical parent was moti-
vated by POSIX compatibility. Unfortunately, it requires
server help. This is further complicated as processes may
have different views of the VFS, e.g., processes running
in a chroot. Additional support is thus required to
override dot-dot so that chrooted processes (and their
children) do not see the physical parent of the root but a
VFS root.

The file_reparent appears to solve this issue,
however, introduces its own problems. If a translator is
itself started in a chroot, say /chroot, and a pro-
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cess which has a different root directory, say /, attempts
to resolve a path starting in the translator’s name space
but which ascends the hierarchy traversing the transla-
tor’s root directory, it will get unexpected results.

Assume the translator is mounted on /chroot/mnt
and the process, starting at /chroot/mnt, looks
up ../../foo. When the process invokes the
dir_lookup method, the translator returns a retry
message including a capability referencing the under-
lying node but whose logical root is set to /chroot.
When the process retries the rest of the path with this
handle, it will resolve to /chroot rather than / as the
underlying file system compressed dot-dot at the han-
dle’s logical root. Had the process resolved dot-dot on its
own, it would have arrived at the correct directory. What
has happened is that the naming context has changed.

Pike argues for lexical name resolution, i.e., making
applications responsible for the resolution of dot-dot, as
POSIX semantics are actually rarely what users want
[27]. Adopting such a policy on the Hurd, would not
only improve the user experience but would also fix the
above problem by entirely removing the need for server
resolution of dot-dot and thus file_reparent. This
also has the additional fortunate effect of significantly
simplifying servers and proxies.

3.5 Passive Translators and Naming

Translators are started in two different scenarios: by a
program, at the behest of a user; and by a file system,
as it traverses the VFS and accesses a node which has a
passive translator setting but no running translator. The
latter scenario was motivated by the requirement for a
mechanism which restores running translators after sys-
tem restart.

When a program starts a translator, as when it starts
any program, it first locates the executable object. This
usually means performing a dir_lookup on the appro-
priate object with the provided path name. Having found
the object, it then instantiates a new program instance
including providing it with a naming context.

As passive translator settings do not include naming
contexts—they are strings—the file system uses its own
default naming context. Users tend to encounter this
problem when they provide a relative path in the passive
translator setting rather than an absolute path.

More of a concern, however, are the implications for
enforcement of security policies: chroot is sometimes
used as a protection mechanism as it restricts the name
space of a set of processes, limiting reachability. Making
the name space of the file system available to the encap-
sulated process renders this redundant.

Consider the case where the root of the translator’s
naming context is / and the root of a chrooted pro-
gram instance’s naming context is /chroot. That is,

the program which started the encapsulated program
instance obtained a capability to /chroot, invoked
file_reparent on it to override the object’s dot-
dot entry with the null capability and installed the re-
sulting capability in the encapsulated program instance’s
root directory capability slot. The encapsulated program
instance can escape by setting a passive translator on
/chroot/foo (what it locally knows as /foo) and
then stating the object:

$ settrans -cp /foo /hurd/firmlink /
$ ls -l /foo

When the translator examines the object, it sees that the
node has no translator but does have a passive translator
setting. It proceeds to start a translator by resolving the
command name to an fs object relative to its own root
and, in executing it, providing the program instance with
a capability to its own root. If the translator is, as above,
a firm link, a translator which makes some name space
available at the translated node, then the encapsulated
program has successfully escaped. Alternatively, the en-
capsulated program instance could debug the translator
(it has the same UID) and simply copy the capability.

To avoid this, the program instance that sets the pas-
sive translator must also provide a naming context in
which the passive translator is interpreted as well as a
default naming context for the translator instance. That
is, it must provide closures, not just strings [30]. Ar-
guably, the file system has at least the former: it need
only remember which handle the passive translator was
set with. The problem is that the handles are not persis-
tent and the main motivation behind passive translators
is that since capabilities and processes are not persistent,
a method is needed to restore translators.

This problem, known as trusted recovery [9], can be
fixed by making the system persistent thereby circum-
venting the reconfiguration problem [21, 33, 37]. This
may appear as overkill, however, persistence is a highly
desired feature: desktop environments work hard to re-
store running applications to the state they were running
in when the user logged out; and many users, in partic-
ular laptop users, choose to suspend to disk or memory
rather than turn the computer off.

3.6 Server Allocations

On the Hurd, most objects are accessed via sessions.
This is usually motivated by POSIX compatibility. File
handles, for instance, are required to maintain the cursor
position and record the logical dot-dot binding. For each
session, the server must allocate some storage. In the
case of objects that cause allocations, this is not a prob-
lem. However, with only sense access to an object, the
client should not be able to allocate additional storage.
Yet, this is the case and, as such, a malicious program,
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having only authorized to use the sense interface to an
object, is able, in bounded space, to cause the server to
consume an unbounded amount of memory: it simply
enters an endless loop performing an open on the file.
The server cannot tell which process is causing the allo-
cation; it can, at best, implement a local per-user memory
quota. This has the unfortunate side effect of potentially
limiting legitimate uses of the server (what is the right
quota?). It also makes a new denial of service attack
possible: an encapsulated process can exhaust the user’s
resource quota. Again, identity based access control is
inadequate.

To avoid this, sense interfaces should be designed
such that they do not require server allocations or that
the client provide the resources by passing a capabil-
ity which names a resource pool of some sort, similar
to EROS space banks [33] or resource containers [3],
against which the server then allocates the resources.

When possible, allocations should be avoided. In the
case of the cursor, this is possible. As multiple processes
can access a single file descriptor (i.e., a single handle),
this raises the question of how to coordinate access to
the cursor. The majority of shared file descriptors name
pipes. As pipes are unseekable, they do not require a
cursor. In rest of the rare cases in which two processes
share a file description to a seekable object, they must
coordinate access to the cursor anyway. This already re-
quires that they be mutually trusting. However, as this
is quite complicated, it is normally avoided by immedi-
ately duping the file handle on receipt. Thus, it appears,
a shared cursor is rarely required.

4 Evaluating Mach
Liedtke argues that the microkernel approach to system
structure is often rejected based primarily on the per-
ceived high cost of the message passing mechanism [22].
We observe additional shortcomings in Mach regard-
ing resource scheduling and resource accounting that we
contend also need to be addressed for the microkernel
approach to have competitive performance and be able
to support safe use of potentially malicious programs.

4.1 Resource Scheduling

Most systems provide tasks the illusion that they are run-
ning on a machine with infinite resources: tasks allocate
virtual memory, memory that the kernel transparently
moves between physical memory and backing store; like-
wise, threads need never explicitly yield the CPU as the
kernel automatically preempts them [7]. This is conve-
nient insofar as it relieves applications from having to
respond to resource shortages, perform resource multi-
plexing and simplifies dynamic reallocation of resources.
Assuming that competition for the physical resources re-
mains relatively low, good resource utilization can be

achieved without application support as evidenced by
the many monolithic kernels which successfully employ
such techniques. When this assumption is violated, when
significant resource multiplexing occurs, system perfor-
mance can significantly degrade if poor scheduling de-
cisions are made [17]. It also tends to push real-time
applications into a privileged scheduling class.

4.1.1 Efficiency

For centralized resource management, a monolithic ker-
nel has two resource scheduling advantages over a multi-
server: it can better predict resource usage patterns and
more components can interact with the scheduler.

Due to their centralized nature, monolithic kernels
have a higher level view of how users and processes
use resources: they implement the high level abstrac-
tions such as UIDs, file systems and network protocols
and directly interact with the users of these resources.
These abstractions can provide important hints regard-
ing expected resource usage. A monolithic kernel, for
instance, can relatively straightforwardly implement file
based read-ahead. On the Hurd, these abstractions are
implemented by user-space servers, which Mach does
not only not regard as special but of which Mach has no
additional knowledge. As such, by itself, Mach is only
able to implement disk based read-ahead. Such optimiza-
tion techniques cannot be reliably implemented in the
respective user-space servers as these processes do not
have information regarding memory pressure and thus
cannot correctly determine how aggressively to act.

Second, because these high-level abstractions are im-
plemented by the monolithic kernel, these components
are able to hook into the resource management frame-
work in ways which violate formal component bound-
aries. Linux, for instance, in addition to employing a
page replacement strategy based on memory access pat-
terns, drains a number of caches including that main-
tained by the widely used slab allocator [4], the direc-
tory entry cache, the inode cache and the disk quota entry
cache. Gorman reports that the last three have a “cascad-
ing effect [which] allows a lot more pages to be freed”
[15, Sect. 10.4]. In a strict sense, these caches consist of
anonymous memory.

These components have local knowledge which the re-
source manager by itself is unable to observe. Such local
knowledge is not limited to kernel components: many
applications could improve their resource use if they had
more control over the scheduling policy. This includes
database applications [35], scientific applications [6],
multimedia and other adaptive applications [10], garbage
collectors [17] and cache managers.

The last class of applications, compute data and are
able to cache it for opportunistic reuse. This includes in-
teractive applications such as web browsers, which lay
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out HTML documents, and image viewers, which de-
compress and scale image files. Keeping these computed
objects in otherwise idle memory can result in reduced
processing costs (both CPU time and power) when they
are again required. Mach, like most operating systems,
however, provides no mechanism to restrict such data to
idle memory or a feedback mechanism. As such, the
memory manager may page the data to backing store.
This may be more expensive than simply rerendering the
object on demand. A JPEG file, for instance, may be a
few hundred kilobytes compressed or several megabytes
uncompressed. Sending all of this data to backing store
and then paging it in again when required is likely less
efficient than simply discarding the data and reading the
original image file and uncompressing it again on de-
mand.

As applications are unable to intelligently manage
their cache, they must act conservatively. GQView, a
popular image viewer for GNOME, maintains, by de-
fault, a 10 MB cache of rendered images [12]. gThumb,
another image viewer for GNOME, keeps a static cache
of four images and preloads the image following and that
previous to the requested image [2]. Neither application
pro-actively frees its cache.

Yet even this can cause resource underutilization.
Getty of the One Laptop per Child (OLPC) project, a
group developing a resource poor laptop for children in
developing nations based on GNU/Linux, has advised
developers to act conservatively: to avoid caching data
and rerender when necessary [14]. Similarly, Linksys re-
cently revised their popular router to use vxworks instead
of GNU/Linux and were able to halve the 16MB RAM
and 4MB of flash thereby increasing profitability despite
the engineering costs [24].

The need for such mechanisms has been articulated
by the academic research community over a decade ago
[20, 13]. Monolithic systems have resisted this problem
by generally performing well enough for common work-
loads and relying on resource over-provisioning, special
tuning and highly privileged and specialized extensions
to handle the rest. We contend these problems are not
isolated to multi-server systems but simply exasperated
by them and that safe mechanisms need to be found to
better exploit local information and knowledge.

We observe that there are two specific classes of
scheduling scenarios over which more control is useful:
distribution and multiplexing. In the first case, some con-
trolling agent wants to distribute resources among a num-
ber of principals. For instance, the system administrator
wants to divide resources among users using, e.g., pro-
portional share; and a user, among her own tasks accord-
ing to her priorities. The second class is that of appli-
cations which make direct use the resources. They want
to influence the memory eviction policy and how threads

are scheduled.

4.1.2 Real-Time

Applications with real-time properties are those which
contain tasks the result of whose utility is influenced
by the wall clock. The most obvious example of real-
time applications found on general-purpose operating
systems are multimedia applications. Interactive applica-
tions also have a real-time aspect. Although support for
real-time applications is not an explicitly stated goal of
the Hurd, given the increasing use of applications which
have such properties, the Hurd’s lack of support reduces
the usability of the system.

The realization of real-time properties depends on the
ability of programs to be able to make predictions of
progress. This does not necessarily require hard resource
guarantees: statistical guarantees for the these classes of
applications are sufficient. What is required is that the
amount of resources available to the application, their ac-
cess properties be known and these be reasonable.

Virtual resources as specified by Mach and most com-
modity operating systems fail to satisfy this last property.
The worst case access times of virtual resources is essen-
tially infinite in particular, compared with their average
case access times. Currently, applications have to hope
that data will not be paged and that the CPU allocation
will remain at least as large as in the recent past. This
encourages conservative behavior.

An approach to enable applications to meet real-time
properties is to provide a real-time application class. Ap-
plications in this class are allowed to make guaranteed
physical resource reservations. As this is easily abused,
the admission criteria are quite strong. We would like to
improve the ability of unprivileged applications to fulfill
their real-time properties.

This motivates the mechanisms to allow untrusted pro-
grams to request resource schedules, to make schedul-
ing information available and to provide visible revoca-
tion. Applications with real-time properties also desire
the ability to request resource schedules which include
properties such as duration and jitter. This ties in with
the desire for better control of resource scheduling and
should be solvable in a uniform fashion.

Additionally, many real-time applications also have
the property that they are adaptive by which is meant
that they are able to trade result quality against utility:
if there are insufficient resources available to finish the
task within the appointed deadline but a lower quality re-
sult can be produced within the time constraint, it is of
greater utility than a perfect but late result [10].

4.1.3 Safety

The problem posed in introducing mechanisms to sup-
port higher control of policy is that they can quickly be-
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come complicated compromising system safety [11]. In
particular, the kernel must be careful to not create de-
pendencies on the correct behavior of code which is not
intended to form part of the reliance set, i.e., a buggy or
malicious program should not be able to adversely affect
other programs in the system. In a monolithic system,
memory components which could take advantage of this
are already part of the reliance set.

4.2 Resource Accounting

Consistent with the illusion that resources are infinite,
Mach performs no resource accounting. This introduces
a security hole as virtual resources are, in fact, limited:
the degree of multiplexing of physical memory is limited
by the amount of backing store reserved for that purpose,
opening up the possibility of a denial of resource attack.

Because resources are not accounted, simply allocat-
ing large amounts of resources is sufficient to perform a
denial of resource attack. It might seem that the affects
of such an attack could be mitigated without changing
the resource allocation API by enforcing reasonable per-
process quotas. This is easily overcome by malicious
entities, however, by spawning multiple processes. Ex-
tending the quotas to users will not work either: users are
a Hurd abstraction not known to Mach.

The problem underpinning the above thought exper-
iment is the assumption that we can successfully coax
an implicitly named resource principal out from where
there is none: the process which allocates the resource
is often not the resource principal. When a process reads
data from a file, it invokes the io_readmethod on a ca-
pability naming an io object. The server then allocates
memory on behalf of the client, reads the data into the
memory and returns it to the calling process. Thus, al-
though the file system invoked the kernel to perform the
resource allocation, the allocation should, in this case, be
charged to the process, or rather, the principal on whose
behalf the process is running. This problem is explored
in the context of monolithic kernels by Banga et al. in
[3].

To ward off denial of resource attacks, the idea of a
resource principal or container needs to be introduced.
Such an abstraction needs to be able to be passed around
in a secure manner allowing servers to allocate resources
on behalf of clients but which clients are able to recover
in the case where the server misbehaves. Later versions
of OSF Mach introduced so-called resource ledgers for
accounting the use of wired memory and swap space,
however, they rely on ambient authority, i.e., they are not
directly named, complicating allocation. A better model
may be KeyKOS’s CPU meters and space banks [16] and
as later evolved in EROS [33] which do not have these
deficiencies.

5 Lessons and Thoughts
Our experience with the Hurd has led to a number of re-
alizations that may help future designers of general pur-
pose operating systems.

5.1 Security

The Hurd empowers the user by making a number of use-
ful privileged operations unprivileged. By reifying iden-
tities, it also provides discretionary authority reduction
mechanisms allowing programs to protect themselves
from attackers. Neither of these address a major secu-
rity problem of today: the inability to protect data from
program instances.

To achieve this, programs should be run consistent
with the principle of least privilege. Recent research on
capability systems suggests that capability can provide a
usable framework to realize such a system. In particu-
lar, to allow run-time delegation of authority, the power-
box, a trusted program, interacts with the user on the pro-
gram’s behalf.

5.2 Naming and Binding

Recovering the configuration of the system on restart im-
proves usability. To facilitate this, the Hurd allows users
to save translator settings in nodes. When the node is
accessed and no translator is running, the file system can
then transparently restart the translator. The problem that
this raises is that the naming context cannot be serialized,
leading to a number of security concerns as a malicious
user is able to confuse file systems.

This is a general problem wherever symbolic names
are severed from their naming context and often occurs at
the storage boundary where there is no easy way to seri-
alize a naming context. As symbolic names are primarily
of interest to users and not to programs, we suggest that
symbolic names be avoided and capabilities be used as
designators. The problem this raises is that capabilities,
like naming contexts, need to be saved. By making the
system persistent, this problem is circumvented.

5.3 Resource Management

We have noted that although virtualized resources are
convenient, they are also often problematic due to ineffi-
cient resource scheduling and their ineffectiveness when
trying to realize real-time properties. This former prob-
lem is not unique to multi-server systems but particu-
larly pressing as it appears the techniques used by mono-
lithic kernels to compensate for lack of local knowledge,
namely, introspection of high-level functionality to help
predict resource usage patterns, cannot be used by a mi-
crokernel where such functionality is implemented in
user-space. We contend that an interface is needed to
allow unprivileged programs an increased ability to in-
fluence resource scheduling both regarding distribution
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and multiplexing.

5.4 Legacy Support

Legacy support is highly desirable for non-mainstream
operating systems: application developers tend to target
widely deployed systems, however, deployment penetra-
tion appears to be strongly correlated with the number of
applications available. Moreover, if a system lacks sup-
port for just one or two applications, users will reject it.

The Hurd aimed to not only run legacy applications,
but to tightly integrate them and provide them with many
of the advantages of Hurd mechanisms. In this regard,
the Hurd was successful. The Hurd, however, in its strict
support of POSIX, unnecessarily complicated the system
structure. We have observed that this was often moti-
vated by questionable features such as server resolution
of dot-dot and a server implemented cursor.

Finally, care must be taken to preserve non-functional
API and ABI requirements such as trust assumptions.
The most important example of the Hurd’s failure in this
regard is that of legacy programs being susceptible to at-
tack by malicious file systems.

6 Conclusion
The Hurd started with the observation that a number of
useful Unix mechanisms, in particular, those regarding
the extension of the VFS, should be available to users.
By adopting a multi-server system and a decentralized
naming framework, the Hurd makes it possible for users
to provide their own file systems implementations and
integrate them into the VFS.

The Hurd’s has two noteworthy security shortcom-
ings: it does not provide mechanisms to protect resources
from program instances; and symbolic names are often
separated from their naming contexts.

An important goal of the Hurd was to support POSIX
applications. Sometimes this was done too faithful com-
promising parts of the system structure. Other times, the
Hurd failed to consider important aspects of legacy com-
patibility, namely, assumptions applications have regard-
ing behavior.

To allow the efficient use of resources on microkernel
based systems, it appears that applications must partic-
ipate in resource scheduling. We observe that there are
two main areas where applications can usefully extent
greater control of resource scheduling: distribution and
multiplexing.
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