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Current operating systems provide inadequate mecha-
nisms to protect user data. The main problem is that all
of a user’s programs run in the same trust domain. A bet-
ter model is one which is consistent with the principle of
least authority (POLA). An object-capability system may
be able to better achieve this: capabilities bundle autho-
rization and designation thereby easing delegation and
the dynamic creation and management of fine-grained
trust domains.

Despite this, object-capability designs are rejected due
to a perceived excessive overhead resulting from the de-
gree of decomposition and the corresponding rise in the
amount of inter-process communication (IPC). Although
the work on L4 has demonstrated that IPC can be made
extremely fast, historically, L4 lacks mechanisms to effi-
ciently delegate fine-grained authority.

In this paper, we present a capability transfer mecha-
nism that exploits the memory management unit (MMU)
present in all modern commodity hardware by using it
to build a content addressable memory (CAM) to expe-
dite capability resolution. For the common case of an
IPC carrying a single capability, we observe a 2% in-
crease in message transfer time compared to a less flexi-
ble but more commonly used IPC implementation based
on capability registers. Relative to the time taken to
transfer a similarly sized message containing just data
on L4Ka::Pistachio, we observe a 16% increase.

1 Introduction

Users are vulnerable. Computers are being used to store
increasingly large amounts of valuable data and perform
sensitive transactions, yet, a cracked computer can be
bought on the black market for just $0.05 cents [29]. The
problem with such commodity systems is that they lack
the ability to isolate program instances from one another.
Thus, it takes just one malicious or compromised appli-

cation or plug-in to gain control of a user’s system. If
programs were run according to POLA, they would have
access to only those resources they require to perform the
intended task.

To achieve POLA using an access control list (ACL)
mechanism is difficult: it requires the dynamic manage-
ment of principals. To create a new trust domain, a new
principal must be allocated and all resources to which it
should have access must be updated to include the new
principal on their respective ACL. When the principal is
destroyed, all references to it need to be removed to al-
low reusing the principal’s identifier and to avoid leaking
storage. Run-time delegation requires that the source do-
main be able to identify the target domain.

In object-capability systems, capabilities bundle au-
thorization and designation. This removes the need for
special principal identifiers and a shared name-space for
resources: to delegate access to a resource, a capabil-
ity designating the resource is communicated to the tar-
get. As capabilities are self-authenticating, no further ac-
cess checks are required. As capability are designators,
no other identifier is required [15]. Despite their finer-
grained access control, run-time delegation need not be
an intrusive process [31].

Recently, sandbox environments employing capability
concepts have been implemented to realize POLA on ex-
isting general-purpose operating systems. This includes
Plash [18] for GNU/Linux, and Polaris [27] around the
E language for Windows. This paper is concerned with
operating system kernel based approaches to capability
systems though, and we do not consider these approaches
further.

Historically, the most successful capability systems,
EROS [25, 23] and KeyKOS [8], have only allowed the
direct designation of capabilities via a small, fix-number
of so-called capability registers, not a large sparse ad-
dress space. Their limited number allows for fast im-
plementations of capability lookup. However, it requires
the scheduling of capability registers by user programs,
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resulting in copying. The justification is that the benefits
gained from increasing the directly addressable capabili-
ties are less than the impact on performance.

Capability registers represent a further problem when
implementing asynchronous IPC: the capability registers
referenced by a message remain blocked until the mes-
sage transfer completes. This increases register pres-
sure and limits the number of outstanding messages. For
asynchronous IPC to be viable, the number of registers
must be able to support the joint demand of a reasonable
number of extant message buffers and an execution con-
text. This can be achieved by the use of a large, sparse
capability address space. However, this again raises the
question of the impact on performance.

In this paper we explore the use of the hardware
MMU, available in all modern commodity hardware,
to implement a content addressable memory (CAM) to
speed up capability lookup. We believe the observed
speed up is sufficient to justify the use of sparse capa-
bility address spaces, which also enable the potential use
of asynchronous IPC.

We also observe that this technique generalizes to
solve a number of translation problems and can be im-
plemented in user-space using operating system supplied
virtual memory functionality.

The remainder of this paper is structured as follows:
in the next section we give a quick overview of capa-
bility related questions. In the third section, we present
the proposed technique and its application to capability
address translation in both an abstract and a general fash-
ion. Section 4 presents our implementation of an experi-
mental microkernel incorporating the proposed features.
We then evaluate the performance and the complexity of
this experimental kernel in section 5. Section 6 contains
a survey of related work. Section 7 presents suggestions
for future work. We then close the paper with concluding
remarks.

2 Capabilities

In an object-capability system, object invocation by way
of capabilities is the primary means of communication.
An object invocation transfers a message, possibly in-
cluding capabilities, to the invoked object. On such sys-
tems, IPC is prevalent as the system is more decomposed
than current general-purpose operating systems, which
are generally monolithic. This motivates a mechanism
for fast capability transfer.

There are different possible strategies to implement
capabilities. Password capabilities (also known as crypto
caps) [17] are protected via sparsity. That is, they reside
in a global name-space and names are chosen that are
difficult to guess. This ensures that capabilities must be
communicated. One problem with this is that it makes

capabilities only as strong as the random number gener-
ator used to generate them.

A more secure way is to used protected capabilities.
In this case, the bit representation is not exposed to user
capabilities and capabilities can only be communicated
via authorized channels. In this case, local names are
used to address capabilities stored in capability tables.

In such a system, the format of an in-memory capabil-
ity depends on the needs of the implementation.

2.1 Address Spaces

Capabilities must be organized. By some means,
userspace processes must be able to refer to them. Tra-
ditionally, this has been done using so-called capability
registers which basically means that the in-kernel process
structure contains space for a fixed number of capabili-
ties that can be referred to by index. We believe that this
fixed number represents a severe limitation. If a larger
amount of capabilities must be managed than fix in the
registers, complex register scheduling become necessary.

The idea of organizing capabilities in address spaces
is not new [2]. By analogy to the way memory is ad-
dressed by virtual addresses, capabilities are addressed
by capability addresses. Address spaces are created by
mapping pages, i.e., fixed-sized areas of physical mem-
ory, to virtual address ranges in the virtual address space.
Whereas memory is mapped using data pages, capabil-
ities are mapped using capability pages, an abstraction
implemented by the kernel. The kernel must ensure strict
separation of types, as otherwise the complete security
primitive is doomed fail.

2.2 Capability Lookup

Capabilities are primarily referenced when invoked and
when transferred. When using capability address spaces,
a capability is found by indexing the calling task’s capa-
bility address space to find the location of the capability.

The key problem here is how to find the in-memory
representation of that capability. Using capability reg-
isters as EROS does just requires indexing a small ta-
ble. Using capability address spaces, however, requires
walking a more complex data structure. This is slow as it
requires significantly more memory references. We pro-
pose exploiting the MMU for its ability to cache transla-
tions and its very fast page table walker. This approach
achieves the translation from capability address to ker-
nel virtual address in not only a small, fixed amount of
time, but further, no mapping data structures must be tra-
versed explicitly, which is instead done by the memory
management hardware, and gains from all the hardware
optimizations, like translation lookaside buffers (TLBs).
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AS 1:

AS 2:

Figure 1: Two address spaces and the objects they ad-
dress. One object is shared; the others are only accessible
via one of the address spaces.

This is very different from the usual approach of man-
ually walking mapping structures and even replicating
hardware optimizations like TLBs in software. It is sim-
pler, faster, and will profit from future optimizations as
well.

Note, however, that different capability accesses are
not necessarily independent. For example, in an
interrupt-style microkernel such as EROS, no operation
may fail and change observable state. This means that
irreversible changes must only be made after it has been
ensured that the operation will succeed. The fixup func-
tion must also reverse changes. In general, this results
in a high intermingling of the fixup function and the IPC
path, such that, they can only be viewed as a single entity.

3 Fast Address Translation

From a high-level perspective, address translation con-
sists of finding an object associated with an address. That
is:

• checking whether an {asid, address} pair is valid,
and

• translating an {asid, address} pair to the location
of the object.

Figure 1 illustrates this idea. It shows two separate
address spaces and a number of objects. An entry in the
address space may designate an object. Often, there is
one address space per principal.

The problem is then finding a fast algorithm for this
type of address translation and appropriate data struc-
tures. We observe that the translation process is essen-
tially the same as translating a virtual address to a physi-
cal one, and that the hardware MMU was introduced ex-
actly to support this type of operation.

3.1 The Memory Management Unit
The MMU (including the TLBs) is a piece of hard-
ware present in all common modern commodity com-
puting system. It is responsible for handling memory
requests issued by the central processing unit (CPU).
In particular, it translates virtual addresses to physical
addresses, enforces memory protection and does cache
control. To cache translations, the MMU uses a trans-
lation look-aside buffer (TLB), a content-addressable
memory (CAM, also known as associative memory). On
modern x86 and x86-64 processors, this typically con-
sists of 1024 lines.

When handling an address, the result may not be in the
cache. In this case and if the hardware supports it, a hard-
ware page table walk is initiated. This is performed by
the hardware page-table walker and is significantly faster
than a corresponding software implementation. This is
used on x86 and x86-64; architectures using a software
loaded TLB have become less common. If a valid trans-
lation is found, the result is cached in the TLB and re-
turned. Otherwise, a fault is raised (typically by way of
an interrupt).

In particular, the MMU translates arbitrary virtual ad-
dresses to physical addresses, performing access checks
as a side effect of translation, and caches translations. As
the kernel fully controls the mapping data structures that
the MMU interprets, it can organize the virtual address
space layout as seen by the MMU as it sees fit. Using
the following algorithm, the MMU can be exploited to
do almost any kind of key 7→ value translation with ac-
cess permission checks. In short, the MMU can be used
to implement a general-purpose CAM.

3.2 Requirements
Before detailing the algorithm, we first enumerate its de-
pendencies:

Address Translation There must be a mechanism that
translates addresses according to user controllable
rules.

Fault Reflection An address for which there is no valid
translation must either produce a user-handleable
fault or be otherwise easily detected.

Isolation Other principals on which the user does not
rely must not be able to disturb the translation.

In the case of an operating system kernel, the first two
requirements are satisfied by the hardware MMU, e.g., in
terms of hardware page-tables and protection faults; the
last requirement is dependent on the kernel to provide
interfaces that do not allow destructive interference.
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These requirements are moderate, almost any hard-
ware platform that provides virtual memory will satisfy
them. This includes the widely deployed x86, x86-64,
powerpc, ia64 and ARM architectures.

Such hardware MMUs also provide the additional fea-
ture that in the process of translating addresses, access
checks are performed. For instance, page table entries
often contain read and write protection bits.

Some kernel virtual memory interfaces also satisfy
these requirements. Most notable here are Mach mem-
ory objects [2], L4 pagers [7] and EROS keepers [20].
Even the legacy UNIX mmap/SIGSEGV mechanism is
sufficient, though it is questionable if the usual imple-
mentation is efficient enough. This means that user-space
processes can also use the algorithm to speed up transla-
tions. We will return to this possibility in the section on
future work.

3.3 Sparse Arrays
A sparse array is used for address translation. The size of
the array is determined by the range of the key values and
the number of bits required to store a value. In the case
where the values are object pointers, this will typically
be the machine word size.

As the smallest unit of allocation is the page, when set-
ting up a translation, we may also have to introduce trans-
lations for other keys. In this case, the MMU will not
raise an exception when looking up these other keys. To
detect such invalid keys, a special sentinel can be stored
as the value. In this case, before using the value, it must
be compared with this sentinel. If a value matches, an
invalid translation exception must be raised. In the case
where the value is a pointer, an appropriate sentinel is
NULL.

3.4 Segments
Like most kernels, we logically divide the available vir-
tual addresses (of which there are, e.g., 232 on x86 and
248 on x86-64) into a number of “segments.” The term
“segment” as used here is not related to any special
hardware functionality but simply refers to logical ad-
dress ranges. The MMU puts restrictions on the segment
size and its alignment in the form of an architecture-
dependent base-page size.

Most kernels divide a virtual address space into two
segments: a kernel segment and a user segment. The
kernel segment is mostly inaccessible from code execut-
ing in userspace and is the same in all address spaces.
The user segment is per-process and valid mappings can
be accessed using normal load and store instructions.

We introduce another per-process segment: the capa-
bility segment. The capability segment is per-process

but, unlike the user segment, is not accessible using nor-
mal load and store instructions. Instead, a process must
use the kernel interface to manipulate the contained ca-
pabilities.

The capability segment, rather than containing point-
ers to capabilities or capability pages, shadows the capa-
bilities. That is, the kernel aliases the capability pages in
the process’s capability segment. The major advantage is
that when we index the segment to find a capability, there
is no level of indirection; the capability representation is
immediately available.

Further, the use of a per-process capability segment
means that it is mapped at the same offset in each address
space (thus, it is at a known, fixed location) and always
has the same size. This reduces the number of variables
required to perform a lookup.

Finally, by making the segment a power-of-two and
imposing the additional restriction that higher-bits are
simply ignored, we are able to use bit operations to elim-
inate branches that would be required to perform bounds
checking.

3.5 Algorithm
For each address space, we allocate a range of virtual
addresses sufficient to hold the maximum number of keys
(addresses) multiplied by the size of a value.

When looking up a value, a number of checks must be
performed:

Bounds Check to prevent out of range errors,

Validity Check to ensure the translation is valid, and

Access Check to determine whether the principal is au-
thorized to access the object.

We first perform the bounds check. If it the address is
within the array, translation continues.

We then scale the input address according to the size
of the value and bias the result relative to the base of
the array. For instance, if a value is 8-bytes large, the
address may be multiplied by 8 and the result added to
the segment’s base. This yields a so-called intermediate
virtual address.

The intermediate virtual address is then used to read
the key’s value. This is done using normal hardware load
instructions. A side-effect of this is that the MMU will
perform the remaining address translation and may be
used to perform any required access permission checks.
Translation failure will be reported just like any other vir-
tual address translation fault.

The generic algorithm described here is shown in list-
ing 1. The kernel specialized algorithm, based on the ob-
servations in the previous sections, is shown in listing 2.
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if key < 0 or key >= max
throw OutOfRange

value = array[key]
if value == nil

throw InvalidAddress
return value

Listing 1: Generic translation algorithm.

addr &= RANGE − 1
cap = BASE | addr ∗ sizeof (cap t)
if ∗cap == nil

throw InvalidAddress
return cap

Listing 2: Kernel optimized algorithm exploiting the fact
that the range of keys is a power-of-two, that unused bits
are ignored, BASE is a multiple of the segment size, and
that the base and size are known at compile time.

The ability to validate an access is limited by the prim-
itives provided by the underlying translation mechanism.
Often the only way to check an address (apart from walk-
ing the mapping data structure) is to access it directly.
This can be problematic if the kernel wants to ensure
special manipulation semantics, e.g., an interrupt style
interface is not allowed to do any externally visible mod-
ifications before the success of the complete invocation is
ensured [6]. Usually the interrupt handler and the object
access code can cooperate in such cases, however.

4 Prototype

To evaluate these ideas, we have implemented a proto-
type EROS-style microkernel called colonel for the x86-
64 architecture 1.

4.1 Capability Lookup
To use the design described above, two major changes
must be made to the way a microkernel is traditionally
implemented. First, the kernel must maintain an addi-
tional segment in which it maps capability pages. Sec-
ond, the IPC implementation and page fault handler must
be modified to exploit the address translation mecha-
nism, and, importantly, cooperate to recover from invalid
addresses.

First, the kernel must provide an ability to map cap-
pages, and whenever a cappage map request is issued
by a userspace process, it must really map the page,

1Full source code (GPLv3) can be accessed at
http://sourceforge.net/projects/colonel

but without enabling access to it using normal load
and store instructions from userspace. This effectively
makes each mapped cappage an address-space-local ker-
nel page. Note that checking if an address is suppos-
edly pointing to user data, kernel data, or a capability can
be done without traversing the page table as the address
range is statically divided.

Second, the IPC fast path needs to exploit the design.
When handling a capability address, we first transform
the the address to point to the capability’s value (see list-
ing 2). If an address is invalid, dereferencing it will cause
a page fault. As any resulting fault will occur at a known
addresses, the page fault handler can treat it specially. A
fixup function that reports an error to the userspace pro-
cess can be called. This interaction between the fixup
routine and the fast path has to be carefully designed. If
the kernel is implemented in an interrupt-style, for exam-
ple, the fast path must not cause any irreversible changes
before it has ensured that it will not fault.

4.2 Virtual Machine Model
The virtual machine model is very similar to that of
EROS [20]. There are two types of operations: instruc-
tion executions and capability invocations. (The former
can in fact be modelled as the latter.) Instruction execu-
tions are done by the hardware directly; capability invo-
cations are implemented as system calls to the microker-
nel.

4.2.1 Capability Invocation

The general capability invocation primitive accepts the
following arguments:

• bits indicating the request type (e.g., blocking RPC,
send with zero timeout, etc.),

• the address of the capability to invoke,

• N data words to be sent,

• up to M addresses of capabilities to transfer,

• up to M addresses of capability slots in which re-
ceived capabilities are to be stored,

• an optional indirect send string, and

• an optional indirect receive string.

In our implementation on the x86-64 architecture, we
make four registers available for transferring data words,
one for sending a capability, and another for receiving a
capability. An additional six capabilities can be specified
on the stack, three for sending and three for receiving.
As the data words are sent from and received to registers

5



only, there is no need to check any pointers into the user
data address space.

Request Types In different situations, slightly differ-
ent IPC semantics are needed. In general, an IPC consists
of a send phase and a receive phase, both optional. The
send phase is executed before the receive phase, if both
are requested, and then the receive phase is executed only
if the send phase was successful. Both the send and re-
ceive phases can be independently set to be blocking or
non-blocking.

If the send phase is non-blocking, then the IPC will
fail if the target is not currently in the receive state, if it
is blocking, then the process executing the IPC will be
blocked until the target becomes available.

If the receive phase is blocking, then the receive part
will fail if no sending process is currently blocked on
the executing process. Else the executing process will be
blocked until another process tries to send to it.

Additionally, an IPC can be requested as a “call” oper-
ation, which means sending and receiving are blocking.
Furthermore, a special “return” capability that allows
return-at-most-once RPC semantics is manufactured and
inserted as the first capability argument.

4.2.2 Kernel Implemented Objects

All kernel interfaces are exposed as kernel-implemented
objects and accessed by invoking capabilities corre-
sponding to such objects. (Capabilities to kernel-
implemented objects are indistinguishable from “nor-
mal” capabilities. Thus, in principle, every kernel ob-
ject invocation can be transparently virtualized by a user-
space process.) A consequence is that every call is ex-
plicitly authorized. Also as the object is designated
explicitly, the confused deputy problem is more easily
avoided [9].

Processes Processes are the first-class abstraction of a
thread of execution. They consist of an address space, a
register set, and certain miscellaneous state like a fault
handler. From process capabilities so called ‘sender ca-
pabilities’ can be created. All invocations of such capa-
bilities will be delivered as IPC requests to the associated
process. Sender capabilities also contain an opaque ‘pro-
tected payload’ which is set at creation time and deliv-
ered alongside the arguments of an invocation. Processes
can use the protected payload to use the same entry point
for all message but still be able to distinguish among the
multiple objects and interfaces (facets) they implement.

Pages Page capabilites are references to mappable re-
gions of physical memory. They contain little more than
the physical page address and a few bits to distinguish

their type (data page or cappage) and to specify the pos-
sible access rights. The only method implemented by
pages is access right reduction. So less privileged page
capabilities can always be manufactured.

Address Spaces Address spaces are the first class ab-
straction for the virtual memory layout. In the current
implementation, they are quite under-developed. They
allow pages, i.e., physical memory regions designated by
page capabilities, to be mapped into the virtual address
space of a process. Note that capability and memory
pages are treated equivalently in this interface, so there is
a unified data and capability address space. Note further
that multiple processes can share one address space, so
the usual multi-threading idiom is implementable with-
out special kernel support.

Return Capabilities In certain circumstances, most
commonly during a remote procedure call to a different
userspace process, so called ‘return capabilities’ are cre-
ated by the kernel. These are invalidated as soon as they
are invoked for the first time. This way ‘return-at-most-
once’ semantics can be ensured during remote procedure
calls. Return capabilities are also created if a fault mes-
sage is delivered to a fault handler or if a hardware inter-
rupt is signaled to a process.

Other There are a number of other miscellaneous ca-
pabilities: The ‘ioperm’ capability enables access to the
port space (an x86/x86-64 specific method for access-
ing hardware devices). The ‘intctl’ capability allows a
process to register to receive specific hardware interrupts
(or IRQs). The ‘sleep’ capability allows the suspen-
sion of the execution of the invoking process for a cer-
tain amount of time. The ‘range’ capability allows the
manufacturing of arbitrary capabilities. The ‘wrapper’
capability allows for selective revocation of capabilities.
There are a few other capabilities to, e.g., create new pro-
cesses.

4.3 Capability Representation
Colonel represents capabilities as two consecutive 64-bit
words: a 16-bit target identifier, which is either a kernel
internal process id or a magic value to indicate, e.g., that
the capability points to a kernel implemented object, an
48-bit version number, which is used to realize fast in-
validation of capabilities, and a 64-bit protected payload.

Destroyable objects (e.g., processes) contain a version
number that is increased on object destruction. Capabil-
ities to such objects are only valid if the version number
in the capability and the object match. Thus such ob-
jects can be re-used without invalidating all capabilities
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pointing to them. Of course, the version number space
must be sufficiently large to make sure that no overflow
occurs. Assuming a maximum of 105 possible object de-
structions and creations per second, the kernel can run
for at least 248

105 seconds or about 89 years without any
overflow.

4.4 Virtual Address Space Layout
As mentioned above, colonel implements a shared ad-
dress space, i.e., both capability and data pages can be
mapped into the same address space (at different ad-
dresses, of course).

To do so, colonel divides the address space into four
segments of equal size, the user data segment, the user
capability segment, the kernel data segment, and an un-
used segment. This is not optimal, as it wastes space:
the kernel segment usually can be much smaller than the
other segments, and the unused segment is not neces-
sary, however, this simplified the implementation. For
the x86-64 platform, which provides a large virtual ad-
dress space, the impact on address space contention is
low and thus the decision does not represent a practi-
cal limitation. The segments are used to implement a
shared address space for data and capabilities. This is
achieved by cross-checking mappings in both segments.
Thus for every capability page that is mapped into an
address space, colonel creates a “shadow” mapping in
the user capability segment that allows the kernel to ac-
cess the capabilities at an address that is easily computed
from the capability address provided by userspace pro-
cess. This is the key idea to speed up the capability trans-
fer.

4.5 Current Limitations
It has to be stated that our experimental microkernel im-
plementation does not provide all facilities of a real-
world kernel. Mostly missing is accountable address
space construction, as is support for cache control (e.g.,
for memory mapped I/O in device drivers). The interface
for object allocation is functional in principle, but not as
good as it could be. Also some kernel interfaces, like
the traditional sleep capability, are not yet implemented.
We do believe, though, that it provides everything that is
relevant to assess IPC performance.

Address Space Creation Currently, address space cre-
ation is not accounted, which is of course a severe prob-
lem for microkernels aiming for security by offering ca-
pability protected IPC. When a process invokes an ad-
dress space capability, for instance its own, and requests
a page capability to be mapped at a certain address, then
the complete operation is secured by capabilities, but the

memory needed for the mapping is not accounted for. So
the kernel checks, that the process may validly invoke
the address space capability, and also that the page pro-
vided capability is valid, and so on, but when it comes to
creating the mapping structure needed by the hardware,
it allocates the memory on its own, as does for example
L4Ka::Pistachio [11]. This of course makes the kernel
vulnerable to very easy denial of service attacks. This
kind of vulnerability is characteristic for (micro-)kernels
not implemented with security in mind, e.g., Mach and
L4Ka::Pistachio.

This interface shortcoming can be fixed relatively
straight-forwardly. Looking at prior work, there are three
approaches to this:

Address Spaces as Node Trees In the EROS ker-
nel, address spaces are encoded in a machine-
independent fashion as trees of nodes [25]. Nodes
also encode the height of the tree they refer to,
allowing short-circuit traversal and minimizing
the need for complete and therefore relatively tall
trees. This architecturally independent encoding
is translated on demand into the representation
required by the underlying hardware.

Kernel Heaps A different approach is taken by
L4.sec [11]. Instead of making explicit all the
memory the kernel is supposed to use to fulfill
a certain request, that memory is implicitly allo-
cated from so-called “kernel memory objects”.
A userspace process can convert normal memory
pages into pages to be used by the kernel. If
not enough memory is available to fulfill a certain
request, a fault is delivered to the userspace process,
which can then provide more pages. Userspace
processes can revoke memory provided to the
kernel at any time. This scheme has the advantage
of more transparently extending the existing L4
primitives than a EROS-like node tree would do.

VSpaces Still another, novel approach is implemented
in seL4 [4]. Generally, address spaces are com-
posed of “CNodes”, which are comparable to EROS
nodes but of variable size. Several of them are used
to describe an architecture independent guarded
page table (GPT) [13] address space structure. For
software loaded TLBs, there is not much more to
say. On more conventional architectures, these
GPTs are augmented by so-called VSpaces. V-
Spaces superficially resemble the CNode tree struc-
ture but are specifically tailored to the underlying
hardware. Thus their size is generally fixed, as is
the nesting depth, and the object types that can be
placed in them are very limited. Basically, they di-
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rectly abstract the page table structure of the hard-
ware.

Of course two or more of these techniques could be
combined.

Cache Control To implement device drivers and some
multiprocessor shared memory protocols, it is necessary
to be able to control the caching options of mappings.
There is no interface, currently, to do that, but adding
options to the address space.map method should
be simple. It might be desirable to disallow use of this
extended method by all but certain privileged processes.
This kind of restriction would be trivial to implement as
well, by adding access rights bits to the address space ca-
pability. This is already done for, e.g., page capabilities
to indicate whether it is allowed to map them writable.

Object Allocation The current interface for object al-
location is functional, in principle, but very hard to use
correctly and safely. It was derived, in spirit, from the
EROS interface [19] but adapted only inadequately for
the multiple object sizes colonel offers. There is a so-
called range capability which allows new kernel objects
to be allocated from an amount of memory reserved by
the kernel at boot time. While this seems to open the
kernel to the same kind of vulnerabilities as does the cur-
rent unaccounted address space creation, this capability
has to be treated as highly privileged anyway. Typically
it will be wrapped by a privileged userspace system pro-
cess that can realize some allocation policy. This process
has to do tremendous book-keeping, though.

Other Kernel Interfaces Certain miscellaneous ker-
nel interfaces have not been implemented and some are
not even fully specified. The most important of these
are the sleep and scheduler control capability. As ker-
nel interfaces are exposed through kernel implemented
capabilities, adding new interfaces is very easy, though.

The sleep capability provides functionality to stop the
execution of a process for a certain amount of time. It is
generally relatively easy to implement, if the scheduler
resides in the kernel. If it does not, the sleep capability is
not even implemented in the kernel at all.

Scheduler control is a different matter. Scheduling has
long been one of the few policies that remained in the mi-
crokernel. For this reason EROS provided a (privileged)
scheduler control capability that allowed to manipulate
the in-kernel scheduling queues [20]. Recent work on
the L4Ka::Pistachio microkernel [28] has demonstrated
the viability of entirely removing the scheduler from the
kernel. This is harder to implement, of course, but it
seems, from a minimalistic perspective, the correct op-
tion.

Pistachio baseline capas
sloccounta - 11,067 11,172

cycles 230 261 266
relative 1.0 1.13 1.16
relative - 1.0 1.02

agenerated using David A. Wheeler’s ‘SLOCCount’

Table 1: Comparison of colonel baseline, colonel capas,
and L4Ka::Pistachio

Multiprocessor Support Multiprocessor support has
been completely excluded from the initial design. It has
been shown [30] that only extensive adaptations yield ac-
ceptable performance. These kinds of considerations not
only distract from the different problem that we want to
discuss here, they also require a lot of knowledge about
the topic, which we would not claim to have.

5 Evaluation

We evaluate the performance of our capability lookup
mechanism by comparing IPC fast path performance.
(On colonel, the IPC fast path is taken if the payload con-
sists of only data words and up to one capability.) A ver-
sion of colonel entirely without capability address space
support is used as a baseline. We also report on a partial,
more conventional implementation of capability address
spaces using a hashmap. Furthermore we compare L4-
Ka::Pistachio performance on the same hardware.

All benchmarks were taken on an AMD Sempron64
CPU.

5.1 Comparison to Baseline Colonel and
L4Ka::Pistachio.

We measured the performance of the optimized common
case, a so-called null RPC, and compare it to the per-
formance of the same operation on the L4Ka::Pistachio
microkernel, widely known for its superior performance
[14]. This is the case of one process calling a second
process and blocking until the reply is received. The
called process (e.g., a server) immediately replies. The
call carries a minimal payload, that is to say only direct
data words; no capabilities and no indirect strings are
transferred. Note that colonel still checks all IPC for va-
lidity. This means that it does the following things that
L4Ka::Pistachio does not:

• dereference and check the capability invoked by the
caller,

• generate a ‘return capability’ for the callee,
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• dereference and check the (return) capability in-
voked by the callee, and

• invalidate the return capability.

L4Ka::Pistachio provides no protected IPC: threads
have local global identifiers. Colonel ‘baseline’ provides
capability protected IPC via EROS-style capability regis-
ters. Colonel ‘capas’ provides the same kind of protected
IPC, but via capability address spaces.

As can be seen from the table, colonel is only
marginally slower than L4Ka::Pistachio, taking respec-
tively 1.13 and 1.16 times as long as L4Ka::Pistachio.
However, colonel is, as far as we can tell, significantly
less aggressively optimized while, by definition, doing
more work.

Furthermore, we have tried to measure the increase of
code complexity due to capability address spaces. As can
be seen from the table, the code size grew by about 100
SLOC.

We want to emphasize the small cost of switching
from a capability registers implementation to a capabil-
ity address space one. This has tremendous effect on the
operating system design space.

The comparison to L4Ka::Pistachio shows that colonel
is a realistic microkernel. It has been demonstrated that
microkernels offering capability protected IPC can be as
fast as those offering no protection [22].

5.2 A More Traditional Implementation
Additionally, we want to demonstrate that exploiting the
MMU for capability resolution is really superior to other
lookup strategies. For this reason, we added a central-
ized, fixed-size software TLB for capability lookup. It
is implemented as a hashmap, using traditional modular
hashing. The number of entries is a fixed prime, typ-
ically 1021. Each entry consists of an address space
identifier (asid) and a virtual cap-page address (addr),
as well as the allowed access rights. To dereference an
{asid, addr} pair, an index into the hashmap is com-
puted as

asid⊕ addr (mod N),

where⊕ denotes exclusive-or and N is the number of en-
tries. If asid and addr used to compute the index match
the stored asid and addr, and the necessary permissions
are available, the kernel can directly access the capabil-
ity at addr. Otherwise, the page table hierarchy must be
walked by hand to check if the access is valid (if this is
the case, an entry is inserted into the hashmap). In case
of a collision, the entry is simply overwritten.

We want to emphasize that this is a very idealistic de-
sign. It is a “best-guess” at the performance that could
be achieved. If a hashmap was to be adopted as the

cycles overhead
MMU 266 -

partial hashmap 306 15%
full hashmap (extrapolated) - > 30%

Table 2: Comparison of different lookup strategies

primary implementation technique, it would almost cer-
tainly be slower than what we report here. For example,
we carefully ensured that no collisions would happen in
our benchmarks.

On the fast path, there are four locations where capa-
bilities are accessed, and therefore four hashmap lookups
would be necessary. As this code is not completely triv-
ial, we implemented the complete lookup only once (it
cannot just be copied to the other locations, because there
are not enough registers are available).

As can be seen from table 2, this incomplete code in-
troduces a 15% penalty on lookup time. We believe that
the overhead of a complete implementation would be at
least 30%, probably more.

A TLB miss implies a lengthy procedure of four con-
secutive (physical) memory lookups. No reliable num-
bers seem to be available ([12] reports nine cycles over-
head on the used x86 processor) but our measurement
seems to imply a TLB miss overhead of about 10–15 cy-
cles.

Furthermore, the hashmap implementation yields a
more complicated IPC fast path. For example, the reg-
ister pressure is increased.

In a sense, exploiting the MMU is an optimal solu-
tion in this case: apart from the architectural overhead
of switching the address space, fast path performance
mainly depends on the number of cold-cache memory
references, which directly translate into the number of
TLB entries required. There is a certain minimal amount
of references that cannot be avoided. Generally, there is
one such (cold-cache) reference for the sender, one for
the receiver, and one for global kernel data. Adding a ca-
pability address space generally adds one more memory
reference per capability access. As capability resolution
and access are combined if the MMU is exploited the
way we describe it, no other strategy can be better ac-
cording to this metric.

The hashmap, on the other hand, requires two more
TLB entries to validate the capability accesses. Further-
more, the hashmap has a larger cache footprint.

Note, however, that our hashmap implementation is
suboptimal in that capabilities are not stored alongside
the hashmap entries. This optimization would reduce the
number of TLB entries required at the cost of slightly
complicating kernel logic. It was not feasible to add this
feature with a reasonable amount of work, so we can-
not report on any hard numbers. We speculate, however,
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that this optimized hashmap would not be so dramati-
cally slower than the MMU based implementation. In-
deed the number of TLB entries needed would be the
same. The cache footprint, on the other hand, would still
be increased.

As one additional disadvantage, we note that a
hashmap implementation destroys all locality in the ca-
pability access patterns. In all but the extremely capa-
bility intense processes, the number of accessed capa-
bilities will be rather small and fit inside one cappage.
This means that TLB entries can generally be re-used
even when invoking different capabilities. We empha-
size that this destroyed locality still increases the costs of
a hashmap implementation in more realistic scenarios.

5.3 Cold Cache Costs
It is generally accepted that the most performance sen-
sitive situations will be those occurring extremely fre-
quently. Therefore they are expected to generally run
with hot caches. This is why pingpong is considered a vi-
able benchmark: the userspace processes involved create
minimal cache (and TLB) footprint, so that raw, cache-
hot overhead is measured.

It is not clear whether these assumptions still hold for
a capability address space model. There are more mem-
ory locations involved, so the cold-cache case might in-
deed be more important than before. For this reason,
we attempt to measure cold-cache IPC performance as
well. As the relevant costs are secondary effects to the
actual cache flushing, which are generally hard to quan-
tify, these measurements are less reliable than the other
numbers we present.

TLB Misses Firstly, we measure the impact of flush-
ing the TLB (except for global pages2) at the very be-
ginning of the fast path. This simulates TLB-intensive
processes doing IPC: in the cache-hot setting, the TLB
entries for referenced capability pages are not available
on the IPC to a process, but on the following IPC from the
process, the TLB entry is still there and does not need to
be reloaded. In the TLB-cold setting, this is not the case.

To make this more concrete, consider the server be-
ing called and immediately replying: After the address
space switch to the server, a return capability is created
at a server-specified location. This will cause a TLB
miss. But when the server invokes the return capabil-
ity in the cache-hot setting, the TLB entry for the return
capability is still there and its reference (to validate and
thereafter destroy it) does not cause any TLB misses. If,
however, the server has referenced so many pages in be-
tween that the TLB entry for the return capability was re-

2Global pages are pages that are not normally flushed during ad-
dress space switches, e.g., the pages occupied by the kernel code.

cycles relative
cache-hot 266 1.0
TLB-cold 386 1.46

Table 3: Impact of Cold Caches

placed, there will be more TLB misses than in the cache-
hot case, degrading performance. This is what the TLB-
cold setting simulates.

As can be seen from table 3, there is a considerable,
though not a huge, overhead if the TLB entries must be
reloaded.3 It remains to be seen what effects this has on
the overall system performance.

Data Cache Misses In addition to the TLB, data
caches also have crucial impact on fast path performance
(and any performance-sensitive code accessing memory
in general). The data caches are indexed by physical ad-
dresses, i.e., they need not be flushed during an address
space switch. Again memory-intensive userspace pro-
cesses will cause cache lines to be replaced, thus degrad-
ing IPC performance.

Sadly this cannot be easily simulated, as there are sig-
nificant write-back costs that must not be neglected. This
means that generally the secondary effects we want to
quantify are not much larger than the costs of actually
flushing the caches. Naively inserting a cache-writeback-
and-flush instruction (wbinvd) at the beginning of the
fast path yields code that is about two orders of magni-
tude slower than the original one. This is because all
cache lines are written back and evicted. Instead we
would like to measure only the secondary costs of evict-
ing only those cache lines accessed by the fast path. This
does not seem to be possible in our setup.

To still give an indication of the importance of data
cache misses, we note that two 64-bit accesses to the
Opteron’s4 L1 cache are possible in one cycle. A L1
cache miss, on the other hand, takes at least 10 cycles to
load from the L2 cache [3]. Accessing the main memory
has a significantly greater latency still.

Other Hardware Architectures The analysis we
present is very much targeted towards the current
AMD64 processors. The situation is probably not all that
much different on other x86 and x86-64 processors from
AMD and Intel. But on other hardware architectures,

3The number we present here is slightly problematic in that it in-
cludes the time necessary to do the TLB flush itself, not only the sec-
ondary effects that we really want to measure. We do believe, though,
that these secondary effects are much larger than the cost of flushing
in the first place, so this should induce a negligible incorrectness. At-
tempts to measure the raw flushing time gave contradictory results.

4The AMD Opteron is a processor model quite similar to the Sem-
pron.
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e.g., those providing software loaded TLBs or very dif-
ferent cache architectures, the situation can be spectacu-
larly changed and other trade-offs may need to be made.
This is an area for future work.

6 Related Work

Microkernels have long been a research topic. While
Mach fueled this in the late 80s, its interfaces have
proven inappropriate for today’s hardware architectures.
L4 has demonstrated the feasibility of fast IPC [12], and
EROS has proved wrong many of the claims of the in-
herent performance problems of capability systems [25].
Microkernel systems have in the meantime been adopted
by the industry as well, which is one more indication of
the fact that they have overcome most of the early prob-
lems of Mach. On the other hand, they are still not used
in the way we imagine, i.e., as the foundation of a decen-
tralized object capability system.

During the last years, a trend of introducing more com-
plexity into the formerly extremely scarce interfaces of
second generation microkernels, sometimes even rein-
stating interfaces from first generation microkernels (in
slightly adapted form), can be noted. Liedtke concen-
trated on IPC performance, which he diagnosed as the
most important limiting factor of first generation micro-
kernels [12]. But since then it has turned out that com-
pletely reduced interface primitives are neither sufficient
to implement complex and secure real-world systems,
nor necessary to provide fast interprocess communica-
tion. Along these line, we seek to reintroduce the capa-
bility address space concept in an optimized form.

6.1 Mach

Mach is one of the most influential first generation mi-
crokernels. Capabilities are used for interprocess com-
munication and there is a capability address space. Gen-
erally, Mach provides very rich and flexible interfaces.
Too often, however, this flexibility has been implemented
without considering performance implications. For this
reason, Mach performance has almost always been dis-
appointing and often been one reason for ambitious
projects to fail [5]. Nonetheless, Mach ideas and inter-
faces have influenced all following microkernels.

6.2 The L4 Family

Initially, L4 was written as an extremely minimalis-
tic microkernel with one determining goal: IPC perfor-
mance [12]. To achieve this, all former richness in in-
terfaces has been sacrificed, leaving only the bare min-
imum. The desired result of fast IPC, however, could

be achieved, demonstrating the feasibility of the micro-
kernel approach. Linux has been ported as a userspace
server to L4 [10].

L4 is still an active research platform. L4ng[26],
seL4[4] and L4.Sec[11] are all developed to improve cer-
tain shortcomings of L4, mostly resulting from the ex-
tremely scarce interfaces. After achieving its initial goal
of super-fast IPC, L4 is continually being extended to
accomodate requirements such as security, dependability
and usability.

6.3 EROS and Coyotos
EROS [23] was derived from the KeyKOS [8] operat-
ing system, initially with security and not performance
in mind. As such, it provides capability protected IPC
and orthogonal persistence. After the success of Liedtke,
EROS IPC was redesigned to achieve comparably high
performance. Perhaps surprisingly, it was demonstrated
already in 1996 by this redesigned IPC system that ex-
tremely minimal interfaces like L4 provides are not nec-
essary to achieve high performance [22].

The EROS project has now been abandoned in favor
of two successors, CapROS and Coyotos [24]. While
CapROS mostly continues the EROS project, Coyotos
departs from EROS, to correct some of its shortcomings,
to demonstrate feasibility of an atomic microkernel de-
sign in many different situations, and to use software ver-
ification methods to prove security properties.

7 Future Work

7.1 Asynchronous IPC
One of the strongest motivations for introducing a ca-
pability address space is asynchronous IPC. It turns out
that in certain special situations a well-optimized syn-
chronous IPC primitive just is not sufficient. One exam-
ple of these cases is the traditional of the UNIX select
system call. Implementing this using synchronous IPC
only can be very expensive requiring at least one thread
per server and more often one thread per object. Further-
more, experience suggests that not having to worry about
certain corner cases of strictly synchronous communica-
tion can greatly facilitate system design (of course too ea-
ger use of asynchronous communication introduces new
corner cases). For all practical purposes, synchronous
IPC has to be the common case, as it is almost always
much faster than the asynchronous one. But this is not a
problem, as asynchronous IPC is introduced to aid a few
uncommon but otherwise problematic scenarios.

Implementing asynchronous IPC in a capability regis-
ters environment is very impractical. A potentially large
number of outstanding requests will always be bounded
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by the number of capability registers. This the inherent
limitation of course is not unique to the asynchronous
IPC case, we use it to motivate the capability address
space concept in general. In the context of asynchronous
IPC it is much more pressing, though.

7.2 32-Bit Systems

The design in its current form cannot reasonably be used
on systems providing only 32-bit virtual address spaces.
Creating four equally sized segments would reduce the
effective address space to 30 bits, or 1GiB (per segment),
which is unacceptable.

This is, however, not necessarily so. The design was
worked out for a system with plenty of virtual address
space, and with the goal of implementing a fast, shared
address space of capabilities and data. (The sharing was
supposed to simplify some programming semantics. It
has to be evaluated to what extent this is really the case.)
Once we drop the requirement of a shared address space
and sacrifice some implementation simplicity, the short-
coming can be easily solved by creating three segments
of different size, a large one for user data, a smaller one
for kernel data, and a very small one for user capabilities.

As an example, assume that an effective user data ad-
dress space of 3GiB is desired. The capability address
space usually can be much smaller. Note, though, that
capabilities usually are not byte-sized, so for example if
one capability is four bytes in size, 4MiB of capability
address space really mean “only” 220 capabilities. As-
sume that this is still sufficient. The virtual address range
can then be divided into three parts:

0
... User data.

3 ∗ 230

... Kernel addresses.
232 − 224

... User capabilities.
232

Note that 232 − 224 is represented by the address
0xff000000, or 11111111000... binary. So when the
userspace process provides an address into its capabil-
ity address space, which starts at address 0 and ends at
224 − 1, the kernel sets the eight most significant bits of
the 32-bit address of the capability to 1 to find the ‘real’
capability address.

7.3 Different Optimizations

We report on one special optimization to improve and
speed up IPC. Following the trend we observe, we be-
lieve that different optimizations and enhancements in

semantics will emerge. We address two of these we can
imagine in this subsection.

7.3.1 Larger Direct Payloads

Traditionally, the direct payload that is transferred on the
“super fast” IPC path has been very limited. This is
because traditionally the direct payload has been trans-
ferred in registers only. This very much limits the feasi-
ble IPC interfaces. As these (usually) have to be equal
on all architectures, the most register-scarce architecture
limits the whole design space. Effectively, this tradition-
ally confines all interfaces to the limits imposed by the
x86 architecture, or about four 32-bit words of direct fast
path payload. Exploring possibilities to exploit specifics
of this complicated architecture to overcome this limita-
tion seems to be an interesting future topic.5 If the x86
situation can be improved, the next most limited archi-
tecture would be x86-64, which allows for about a dozen
64-bit direct payload words, so the situation would be
greatly improved.

7.3.2 Reference Counting

The need for reference counting arises naturally in cer-
tain garbage collection scenarios. The most important
one of these could be the implementation of the so-called
membrane pattern [16] which is a kind of local reference
monitor among otherwise isolated processes. It wraps
all capabilities transferred via IPC. A program that im-
plements a very similar pattern is the ‘rpctrace’ debug-
ging tool. To implement either of them sensibly (which
for the membrane implies securely), reference counting
is necessary, as otherwise the wrapper cannot guarantee
to run in the same space complexity as the wrapped pro-
cess(es). To see why, consider a wrapped processes con-
tinually exchanging capabilities, keeping always only the
last one. As the wrapper cannot know the latter with-
out reference counting, it will require space linear in the
number of IPCs, whereas the wrapped process only uses
constant space.

An implementation of reference counting would most
likely have to exploit knowledge (or assumptions) about
the common case IPC scenario. It could superficially re-
semble the “no-senders notification” [2] interface from
Mach. For certain theoretic reasons, a secure membrane
implementation is very much desired, which makes ref-
erence counting a very interesting future topic.

5Indeed, there is a very promising proposal [21].
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7.4 Application to Other Descriptor Trans-
lation Problems

The technique we describe thus far has only been used to
speed up capability address resolution. While all kinds of
address translation problems that are sufficiently similar
to virtual memory address translation are predestined to
use the technique, other applications are possible. For
instance on systems providing a large amount of virtual
addresses, many kernel data structures that have formerly
been implemented using hash tables can be replaced by
sparse arrays, as has been pioneered by the K42 project
[1].

One interesting possibility in this regard is locating
pages in the page cache. The page cache is indexed
by physical location of the page on backing store. To
quickly determine whether a page is in memory and
where it is located, we can again use a sparse array.
As pages are paged aligned and assuming that there is
not more than 232+12 bytes of physical memory (16 ter-
abytes), an address can be saved in 4 bytes of memory
yields 1024 addresses per 4k page. Thus, 4k of virtual
address space suffice to cover 4MB of backing store and
just 240 bytes of virtual address space cover one petabyte
of backing store (recall: x86-64 provides 248 bytes of
virtual address space).

7.5 Application in Userspace

As we remarked earlier, virtual memory interfaces of re-
cent kernels are powerful enough to even use the tech-
nique described in userspace. This opens a completely
new realm of possible applications. For example, one
could think of database lookups being sped up. There
are many possibilities for exciting future work.

8 Conclusion

We present a general algorithm to exploit the MMU of
current commodity hardware to speed up many descrip-
tor translation problems. The lookup capabilities of the
hardware to realize virtual memory, found in all modern
commodity architectures, are utilized directly. Thus, ap-
plications can profit from all special optimizations inside
the hardware, like TLBs, transparently.

Applying this algorithm to speed up capability res-
olution dramatically, we measure only marginal over-
head both in IPC performance and code complexity. In
our benchmarks, IPC performance compared to the same
kernel without capability address spaces is degraded by
merely 2%.
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