
Practical Protection for
Personal Storage in the Cloud

Neal H. Walfield, Paul T. Stanton,
John Linwood Griffin and Randal Burns

Johns Hopkins University

EuroSec ’10
April 13th, 2010



Outline
I Personal Storage Today
I Practial Protection Mechanisms



Web 2.0: Today

I Each service provides the user with storage
I Limited support for sharing between services



An Emerging Issue
I Data Management is Hard!

I Data Lock-In
I No standardized access interface (à la POSIX)
I Must use service’s interface; point solutions

I Data Spew
I Data is hard to find

I Version Drift
I Sharing across services =⇒ divergent copies

I Underlying Architectural Problem:
I Many storage providers
I =⇒ No unified view of data



An Emerging Issue
I Data Management is Hard!

I Data Lock-In
I No standardized access interface (à la POSIX)
I Must use service’s interface; point solutions

I Data Spew
I Data is hard to find

I Version Drift
I Sharing across services =⇒ divergent copies

I Underlying Architectural Problem:
I Many storage providers
I =⇒ No unified view of data



A Simple Solution: One Storage Provider

I User has direct access to data
I Single, authoritative copy
I Cross-service sharing



A Simple Difficulty
I Access Control

I Facebook should not be able to access EMail

I Reputation!
I Users less likely to experiment
I Raises barrier to entry



A Simple Difficulty
I Access Control

I Facebook should not be able to access EMail

I Reputation!

I Users less likely to experiment
I Raises barrier to entry



A Simple Difficulty
I Access Control

I Facebook should not be able to access EMail

I Reputation is not enough!
I Users less likely to experiment
I Raises barrier to entry



Outline
I Personal Storage Today
I Practial Protection Mechanisms



Per-User Storage: Major Design Goals
I Protection

I Least Privilege
I Not Unix
I Fine-grained, dynamic delegation and revocation

I Usability
I Minimal user interactions with security manager

I Opening, saving files
I Delegate access to not-yet-existing objects

I Flickr can access all JPEG files
I Consistent naming of objects

I /photos/paris/dsc_1076.jpg always has same name



S4: Simple, Secure Storage Service
I Hierarchical Principals
I Filtered Views
I Powerbox

I Security manager implements open, save-as dialogs



Principals

Alice

Alice.Hotmail Alice.Facebook

I Hierarchical
I Alice dominates Alice.Hotmail

I Principals identified using public key cryptography



Creating a new Principal

I Credentials communicated using a Webkey
I Includes service’s public, private keys
I Includes storage server’s public key



Filtered Views

Alice

/addressbook
/Maildir/. . .
/photos/. . .
/calendar/. . .
. . .

Alice.Hotmail Alice.Facebook

rw, /addressbook
rw, /Maildir rw, /addressbook

I Filter parent’s name space
I Principal can access that which it can name

I e.g., Regular expressions
I Enables consitent naming, future delegations



Filtered Views

Alice

/addressbook
/Maildir/. . .
/photos/. . .
/calendar/. . .
. . .

Alice.Hotmail Alice.Facebook

rw, /addressbook
rw, /Maildir rw, /addressbook

I Filter parent’s name space
I Principal can access that which it can name

I e.g., Regular expressions
I Enables consitent naming, future delegations



Powerbox

Least Privilege View Powerbox View



Powerbox
I Concept

I Replaces application’s open, save-as dialog box
I Service sends an RPC to security manager
I Security manager displays dialog box

I Essential for usable least privilege
I Dynamic delegation
I No (explicit) user interactions with security manager



Integrating the Powerbox into Flickr
I Alice creates a Flickr account at flickr.com
I Alice creates a principal using security manager
I Alice gives credentials to Flickr
I Flickr starts an import photos wizard

I Invokes Powerbox
I What files would you like to import to Flickr?
I Alice selects one or more directories

I Differences:
I One additional step
I But, Alice can use her own tools to upload photos



Integrating the Powerbox into Flickr
I Alice creates a Flickr account at flickr.com
I Alice creates a principal using security manager
I Alice gives credentials to Flickr
I Flickr starts an import photos wizard

I Invokes Powerbox
I What files would you like to import to Flickr?
I Alice selects one or more directories

I Differences:
I One additional step
I But, Alice can use her own tools to upload photos



Powerbox Protocol in S4

1. File→ Open

2. pb_invoke

3. Open Dialog

4. delegate, pb_close

5. pb_close



Performance
I User’s storage is authoritative
I Services can (should) still cache

I Prompt propagation of updates



Adoption
I User’s want it

I Improved usability, control
I =⇒ Current services lost control

I Differentiator for new service providers

I Big services providers want it?
I Increase user traffic by becoming a storage provider



Adoption
I User’s want it

I Improved usability, control
I =⇒ Current services lost control

I Differentiator for new service providers
I Big services providers want it?

I Increase user traffic by becoming a storage provider



Implementation
I 4000 lines of Python (SLOCCount)

I Single machine, Single threaded
I S3 compatible
I S3 and SQLite backends
I Principal and filter interfaces complete, some Powerbox



Future Work
I Filters based on files’ tags
I Snapshots for recovery
I COW for experimentation
I Publish/subscribe for updates
I Throttling bandwidth intensive services
I Do not disclose content to server



Summary

The Bad (the status quo)
I Data lock-in
I Data spew
I Version drift

The Good (what S4 tries to achieve)
I Single (perceived) file system
I Least privilege
I Minimal user interaction with security monitor

I Powerbox
I Protection mechanisms consistent with user’s intuitions

I All JPEG files

I Delegate access to not-yet-existing objects
I Consistent naming of objects



Take Aways
I Filtering matches how users think about security policies
I Powerbox helps make security invisible



Image Attributions
I User Images - User Experience Deliverables by Peter

Morville and Jeffery Callender - http://www.flickr.
com/photos/morville/3220961846/ - CC Attribution
2.0

I File Images - http:
//www.openclipart.org/user-cliparts/sarxos -
Public Domain

I Key Image - http://www.openclipart.org/people/
johnny_automatic/ - Public Domain

http://www.flickr.com/photos/morville/3220961846/
http://www.flickr.com/photos/morville/3220961846/
http://www.openclipart.org/user-cliparts/sarxos
http://www.openclipart.org/user-cliparts/sarxos
http://www.openclipart.org/people/johnny_automatic/
http://www.openclipart.org/people/johnny_automatic/


Summary

The Bad (the status quo)
I Data lock-in
I Data spew
I Version drift

The Good (what S4 tries to achieve)
I Single (perceived) file system
I Least privilege
I Minimal user interaction with security monitor

I Powerbox
I Protection mechanisms consistent with user’s intuitions

I All JPEG files

I Delegate access to not-yet-existing objects
I Consistent naming of objects


